Quantitative analysis of high-resolution, contrast-enhanced, cone-beam CT for the detection of intracranial in-stent hyperplasia
Flood, Thomas F. ; van der Bom, Imramsjah M. J. ; Strittmatter, Lara ; Puri, Ajit S ; Hendricks, Gregory M. ; Wakhloo, Ajay K. ; Gounis, Matthew J
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
BACKGROUND: Intracranial in-stent hyperplasia is a stroke-associated complication that requires routine surveillance. OBJECTIVE: To compare the results of in vivo experiments to determine the accuracy and precision of in-stent hyperplasia measurements obtained with modified C-arm contrast-enhanced, cone-beam CT (CE-CBCT) imaging with those obtained by 'gold standard' histomorphometry. Additionally, to carry out clinical analyses comparing this CE-CBCT protocol with digital subtraction angiography (DSA). METHODS: A non-binned CE-CBCT protocol (VasoCT) was used that acquires x-ray images with a small field-of-view and applies a full-scale reconstruction algorithm providing high-resolution three-dimensional (3D) imaging with 100 microm isotropic voxels. In an vivo porcine model, VasoCT cross-sectional area measurements were compared with gold standard vessel histology. VasoCT and DSA were used to calculate in-stent stenosis in 23 imaging studies. RESULTS: Porcine VasoCT cross-sectional stent, lumen, and in-stent hyperplasia areas strongly correlated with histological measurements (r(2)=0.97, 0.93, 0.90; slope=1.14, 1.07, and 0.76, respectively; p<0.0001). Clinical VasoCT percentage stenosis correlated well with DSA percentage stenosis (r(2)=0.84; slope=0.76), and the two techniques were free of consistent bias (Bland-Altman, bias=3.29%; 95% CI -14.75% to 21.33%). An illustrative clinical case demonstrated the advantages of VasoCT, including 3D capability and non-invasive IV contrast administration, for detection of in-stent hyperplasia. CONCLUSIONS: C-arm VasoCT is a high-resolution 3D capable imaging technique that has been validated in an animal model for measurement of in-stent tissue growth. Successful clinical implementation of the protocol was performed in a small case series. already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Source
J Neurointerv Surg. 2015 Feb;7(2):118-25. doi: 10.1136/neurintsurg-2013-010950. Link to article on publisher's site.