Loading...
Thumbnail Image
Publication

Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

Hall, Justin
Golenbock, Douglas T.
Latz, Eicke
Embargo Expiration Date
Link to Full Text
Abstract

Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

Source

PLoS One. 2017 Sep 21;12(9):e0184843. doi: 10.1371/journal.pone.0184843. eCollection 2017. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1371/journal.pone.0184843
PubMed ID
28934246
Other Identifiers
Notes

Full author list omitted for brevity. For the full list of authors, see article.

Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright: © 2017 Hall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.