Loading...
Thumbnail Image
Publication

Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4(th) pharyngeal arch artery morphogenesis

Phillips, Helen M.
Maehr, Rene
Bamforth, Simon D.
Embargo Expiration Date
Link to Full Text
Abstract

Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in 22q11 deletion syndrome patients and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9 deficient mice are born with complex cardiovascular malformations affecting the outflow tract and aortic arch arteries with failure of the 3(rd) and 4(th) pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared to Tbx1 heterozygous mice. Using a novel Pax9Cre allele we demonstrated that the site of this Tbx1-Pax9 genetic interaction is in the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for critical tissue interactions during normal morphogenesis of the pharyngeal arch artery system.

Source

Development. 2019 Aug 23. pii: dev.177618. doi: 10.1242/dev.177618. [Epub ahead of print]. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1242/dev.177618
PubMed ID
31444215
Other Identifiers
Notes

Full author list omitted for brevity. For the full list of authors, see article.

Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
© 2019. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.