Loading...
Thumbnail Image
Publication

Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM

Loveland, Anna B
Svidritskiy, Egor
Susorov, Denis
Lee, Soojin
Park, Alexander
Zvornicanin, Sarah N
Demo, Gabriel
Gao, Fen-Biao
Korostelev, Andrei A
Embargo Expiration Date
Abstract

Toxic dipeptide-repeat (DPR) proteins are produced from expanded G4C2 repeats in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two DPR proteins, poly-PR and poly-GR, repress cellular translation but the molecular mechanism remains unknown. Here we show that poly-PR and poly-GR of ≥20 repeats inhibit the ribosome's peptidyl-transferase activity at nanomolar concentrations, comparable to specific translation inhibitors. High-resolution cryogenic electron microscopy (cryo-EM) reveals that poly-PR and poly-GR block the polypeptide tunnel of the ribosome, extending into the peptidyl-transferase center (PTC). Consistent with these findings, the macrolide erythromycin, which binds in the tunnel, competes with poly-PR and restores peptidyl-transferase activity. Our results demonstrate that strong and specific binding of poly-PR and poly-GR in the ribosomal tunnel blocks translation, revealing the structural basis of their toxicity in C9ORF72-ALS/FTD.

Source

Loveland AB, Svidritskiy E, Susorov D, Lee S, Park A, Zvornicanin S, Demo G, Gao FB, Korostelev AA. Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM. Nat Commun. 2022 May 19;13(1):2776. doi: 10.1038/s41467-022-30418-0. PMID: 35589706; PMCID: PMC9120013.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1038/s41467-022-30418-0
PubMed ID
35589706
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources

This article is based on a previously available preprint in bioRxiv, https://doi.org/10.1101/2020.08.30.274597

Related Resources
Repository Citation
Rights
Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. © The Author(s) 2022; Attribution 4.0 International