A programmable dual-targeting di-valent siRNA scaffold supports potent multi-gene modulation in the central nervous system [preprint]
Belgrad, Jillian ; Tang, Qi ; Hildebrand, Samuel ; Summers, Ashley ; Sapp, Ellen ; Echeverria, Dimas ; O'Reilly, Dan ; Luu, Eric ; Bramato, Brianna ; Allen, Sarah ... show 6 more
Citations
Student Authors
Samuel Hildebrand
Sarah Allen
David A Cooper
Faculty Advisor
Academic Program
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Di-valent short interfering RNA (siRNA) is a promising therapeutic modality that enables sequence-specific modulation of a single target gene in the central nervous system (CNS). To treat complex neurodegenerative disorders, where pathogenesis is driven by multiple genes or pathways, di-valent siRNA must be able to silence multiple target genes simultaneously. Here we present a framework for designing unimolecular "dual-targeting" di-valent siRNAs capable of co-silencing two genes in the CNS. We reconfigured di-valent siRNA - in which two identical, linked siRNAs are made concurrently - to create linear di-valent siRNA - where two siRNAs are made sequentially attached by a covalent linker. This linear configuration, synthesized using commercially available reagents, enables incorporation of two different siRNAs to silence two different targets. We demonstrate that this dual-targeting di-valent siRNA is fully functional in the CNS of mice, supporting at least two months of maximal target silencing. Dual-targeting di-valent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g., Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting di-valent siRNAs against each gene. This work potentiates CNS modulation of virtually any pair of disease-related targets using a simple unimolecular siRNA.
Source
Belgrad J, Tang Q, Hildebrand S, Summers A, Sapp E, Echeverria D, O'Reilly D, Luu E, Bramato B, Allen S, Cooper D, Alterman J, Yamada K, Aronin N, DiFiglia M, Khvorova A. A programmable dual-targeting di-valent siRNA scaffold supports potent multi-gene modulation in the central nervous system. bioRxiv [Preprint]. 2023 Dec 19:2023.12.19.572404. doi: 10.1101/2023.12.19.572404. PMID: 38187561; PMCID: PMC10769306.
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.