Natural Polymorphism of Mycobacterium tuberculosis and CD8 T Cell Immunity
Sutiwisesak, Rujapak
Citations
Authors
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
Coevolution between Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, and the human host has been documented for thousands of years. Interestingly, while T cell immunity is crucial for host protection and survival, T cell antigens are the most conserved region of the Mtb genome. Hypothetically, Mtb adapts under immune pressure to exploit T cell responses for its benefit from inflammation and tissue destruction for ultimately transmission.
EsxH, a gene encoding immunodominant TB10.4 protein, however, contains polymorphic regions corresponding to T cell epitopes. Here, I present two complementary analyses to examine how Mtb modulates TB10.4 for immune evasion. First, I use a naturally occurring esxH polymorphic clinical Mtb isolate, 667, to investigate how A10T amino acid exchange in TB10.4 affect T cell immunity. To verify and identify the cause of the immunological differences, I construct isogenic strains expressing EsxHA10T or EsxHWT. In combination with our recent finding that TB10.44-11-specific CD8 T cells do not recognize Mtb-infected macrophages, we hypothesize that TB10.4 is a decoy antigen as it distracts host immunity from inducing other potentially protective responses. I examine whether an elimination of TB10.44-11-specific CD8 T cell response leads to a better host protective immunity. The studies of in vivo infection and in vitro recognition in this dissertation aim to provide a better understanding of the counteraction between immune evasion and protective immunity.