Steroid hormone-dependent transformation of polyhomeotic mutant neurons in the Drosophila brain
Wang, Jian ; Lee, Ching-Hsien J. ; Lin, Suewei ; Lee, Tzumin
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Keywords
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Polyhomeotic (Ph), which forms complexes with other Polycomb-group (PcG) proteins, is widely required for maintenance of cell identity by ensuring differential gene expression patterns in distinct types of cells. Genetic mosaic screens in adult fly brains allow for recovery of a mutation that simultaneously disrupts the tandemly duplicated Drosophila ph transcriptional units. Distinct clones of neurons normally acquire different characteristic projection patterns and can be differentially labeled using various subtype-specific drivers in mosaic brains. Such neuronal diversity is lost without Ph. In response to ecdysone, ph mutant neurons are transformed into cells with unidentifiable projection patterns and indistinguishable gene expression profiles during early metamorphosis. Some subtype-specific neuronal drivers become constitutively activated, while others are constantly suppressed. By contrast, loss of other PcG proteins, including Pc and E(z), causes different neuronal developmental defects; and, consistent with these phenomena, distinct Hox genes are differentially misexpressed in different PcG mutant clones. Taken together, Drosophila Ph is essential for governing neuronal diversity, especially during steroid hormone signaling.
Source
Development. 2006 Apr;133(7):1231-40. Epub 2006 Feb 22. Link to article on publisher's site
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
Co-author Suewei Lin is a student in the Neuroscience program in the Morningside Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.