Retrograde transport by the microtubule-associated protein MAP 1C
Paschal, Bryce Mark ; Vallee, Richard B.
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Keywords
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
Microtubules are involved in several forms of intracellular motility, including mitosis and organelle movement. Fast axonal transport is a highly ordered form of organelle motility that operates in both the anterograde (outwards from the cell body) and retrograde (from the periphery towards the cell body) direction. Similar microtubule-associated movement is observed in non-neuronal cells, and might be involved in secretion, endocytosis and the positioning of organelles within the cell. Kinesin is a mechanochemical protein that produces force along microtubules in an anterograde direction. We recently found that the brain microtubule-associated protein MAP 1C (ref. 7) is a microtubule-activated ATPase and, like kinesin, can translocate microtubules in an in vitro assay for microtubule-associated motility. MAP 1C seemed to be related to the ciliary and flagellar ATPase, dynein, which is thought to produce force in a direction opposite to that observed for kinesin. Here we report that MAP 1C, in fact, acts in a direction opposite to kinesin, and has the properties of a retrograde translocator.
Source
Nature. 1987 Nov 12-18;330(6144):181-3. Link to article on publisher's site