Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections
Lim, Jae Hyang ; Davis, Roger J. ; Li, Jian-Dong
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Streptococcus pneumoniae (S. pneumoniae) causes high early mortality in pneumococcal pneumonia, which is characterized by acute lung injury (ALI). The molecular mechanisms underlying ALI and the high early mortality remain unknown. Despite recent studies that identify deubiquitinating enzyme cylindromatosis (CYLD) as a key regulator for T cell development, tumor cell proliferation, and NF-kappaB transcription factor signaling, its role in regulating bacteria-induced lethality, however, is unknown. Here, we showed that CYLD deficiency protected mice from S. pneumoniae pneumolysin (PLY)-induced ALI and lethality. CYLD was highly induced by PLY, and it inhibited MKK3-p38 kinase-dependent expression of plasminogen activator inhibitor-1 (PAI-1) in lung, thereby potentiating ALI and mortality. Thus, CYLD is detrimental for host survival, thereby indicating a mechanism underlying the high early mortality of pneumococcal pneumonia.
Source
Immunity. 2007 Aug;27(2):349-60. Link to article on publisher's site
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
Full author list omitted for brevity. For full list of authors see article.