Allele-specific knockdown of mutant HTT protein via editing at coding region SNP heterozygosities
Oikemus, Sarah ; Pfister, Edith L. ; Sapp, Ellen ; Chase, Kathryn O. ; Kennington, Lori A. ; Hudgens, Edward ; Miller, Rachael ; Zhu, Lihua Julie ; Chaudhary, Akanksh ; Mick, Eric O. ... show 5 more
Citations
Student Authors
Faculty Advisor
Academic Program
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Huntington's disease (HD) is a devasting, autosomal dominant neurodegenerative disease caused by a trinucleotide repeat expansion in the HTT gene. Inactivation of the mutant allele by CRISPR-Cas9 based gene editing offers a possible therapeutic approach for this disease, but permanent disruption of normal HTT function might compromise adult neuronal function. Here, we use a novel HD mouse model to examine allele-specific editing of mutant HTT (mHTT), with a BAC97 transgene expressing mHTT and a YAC18 transgene expressing normal HTT. We achieve allele-specific inactivation of HTT by targeting a protein coding sequence containing a common, heterozygous single nucleotide polymorphism (SNP). The outcome is a marked and allele-selective reduction of mutant HTT (mHTT) protein in a mouse model of HD. Expression of a single CRISPR-Cas9 nuclease in neurons generated a high frequency of mutations in the targeted HD allele that included both small insertion/deletion (InDel) mutations and viral vector insertions. Thus, allele-specific targeting of InDel and insertion mutations to heterozygous coding region SNPs provides a feasible approach to inactivate autosomal dominant mutations that cause genetic disease.
Source
Oikemus SR, Pfister E, Sapp E, Chase KO, Kennington LA, Hudgens E, Miller R, Zhu LJ, Chaudhary A, Mick EO, Sena-Esteves M, Wolfe SA, DiFiglia M, Aronin N, Brodsky MH. Allele-specific knockdown of mutant HTT protein via editing at coding region SNP heterozygosities. Hum Gene Ther. 2021 Aug 10. doi: 10.1089/hum.2020.323. Epub ahead of print. PMID: 34376056. Link to article on publisher's site