Loading...
Thumbnail Image
Publication

Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment

Chari, Divya A
Ahmad, Maimuna
King, Susan
Boutabla, Anissa
Fattahi, Cameron
Panic, Alexander S
Karmali, Faisal
Lewis, Richard F
Embargo Expiration Date
Abstract

Vestibular information is available to the brain during navigation, as are the other self-generated (idiothetic) and external (allothetic) sensorimotor cues that contribute to central estimates of position and motion. Rodent studies provide strong evidence that vestibular information contributes to navigation but human studies have been less conclusive. Furthermore, sex-based differences have been described in human navigation studies performed with the head stationary, a situation where dynamic vestibular (and other idiothetic) information is absent, but sex differences in the utilization of vestibular information have not been described. Here, we studied men and women with severe bilateral vestibular damage as they navigated through a visually barren virtual reality environment and compared their performance to normal men and women. Two navigation protocols were employed, which either activated dynamic idiothetic cues ('dynamic task', navigate by turning, walking in place) or eliminated them ('static task', navigate with key presses, head stationary). For both protocols, we employed a standard 'triangle completion task' in which subjects moved to two visual targets in series and then were required to return to their perceived starting position without localizing visual information. The angular and linear 'accuracy' (derived from response error) and 'precision' (derived from response variability) were calculated. Comparing performance 'within tasks', navigation on the dynamic paradigm was worse in male vestibular-deficient patients than in normal men but vestibular-deficient and normal women were equivalent; on the static paradigm, vestibular-deficient men (but not women) performed better than normal subjects. Comparing performance 'between tasks', normal men performed better on the dynamic than the static paradigm while vestibular-deficient men and both normal and vestibular-deficient women were equivalent on both tasks. Statistical analysis demonstrated that for the angular precision metric, sex had a significant effect on the interaction between vestibular status and the test paradigm. These results provide evidence that humans use vestibular information when they navigate in a virtual visual environment and that men and women may utilize vestibular (and visual) information differently. On our navigation paradigm, men used vestibular information to improve navigation performance, and in the presence of severe vestibular damage, they utilized visual information more effectively. In contrast, we did not find evidence that women used vestibular information while navigating on our virtual task, nor did we find evidence that they improved their utilization of visual information in the presence of severe vestibular damage.

Source

Chari DA, Ahmad M, King S, Boutabla A, Fattahi C, Panic AS, Karmali F, Lewis RF. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment. Brain Commun. 2023 Dec 8;5(6):fcad345. doi: 10.1093/braincomms/fcad345. PMID: 38116141; PMCID: PMC10729862.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1093/braincomms/fcad345
PubMed ID
38116141
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
This work is written by (a) US Government employee(s) and is in the public domain in the US.
Distribution License