Signaling mechanisms regulating Wallerian degeneration
Freeman, Marc R.
Citations
Authors
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Keywords
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
Wallerian degeneration (WD) occurs after an axon is cut or crushed and entails the disintegration and clearance of the severed axon distal to the injury site. WD was initially thought to result from the passive wasting away of the distal axonal fragment, presumably because it lacked a nutrient supply from the cell body. The discovery of the slow Wallerian degeneration (Wld(s)) mutant mouse, in which distal severed axons survive intact for weeks rather than only one to two days, radically changed our thoughts on the autonomy of axon survival. Wld(s) taught us that under some conditions the axonal compartment can survive for weeks after axotomy without a cell body. The phenotypic and molecular characterization of Wld(S) and current models for Wld(S) molecular function are reviewed herein-the mechanism(s) by which Wld(S) spares severed axons remains unresolved. However, recent studies inspired by Wld(s) have led to the identification of the first 'axon death' signaling molecules whose endogenous activities promote axon destruction during WD.
Source
Curr Opin Neurobiol. 2014 Aug;27:224-31. doi: 10.1016/j.conb.2014.05.001. Epub 2014 Jun 5. Link to article on publisher's site