Loading...
Thumbnail Image
Publication

A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome

Lu, Simin
Semenkovich, Clay F.
Greer, Peter A.
Urano, Fumihiko
Citations
Altmetric:
Student Authors
Simin Lu
Faculty Advisor
Academic Program
Document Type
Journal Article
Publication Date
2014-12-09
Keywords
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract

Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and β cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.

Source

Lu S, Kanekura K, Hara T, Mahadevan J, Spears LD, Oslowski CM, Martinez R, Yamazaki-Inoue M, Toyoda M, Neilson A, Blanner P, Brown CM, Semenkovich CF, Marshall BA, Hershey T, Umezawa A, Greer PA, Urano F. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5292-301. doi: 10.1073/pnas.1421055111. Epub 2014 Nov 24. PubMed PMID: 25422446; PubMed Central PMCID: PMC4267371. Link to article on publisher's website

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1073/pnas.1421055111
PubMed ID
25422446
Other Identifiers
Notes

Full author list omitted for brevity. For the full list of authors, see article.

Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
<p>Freely available online through the PNAS open access option.</p>
Distribution License