Publication

Matrix metalloproteinase proteolysis of the mycobacterial HSP65 protein as a potential source of immunogenic peptides in human tuberculosis

Shiryaev, Sergey A.
Cieplak, Piotr
Aleshin, Alexander E.
Sun, Qing
Zhu, Wenhong
Motamedchaboki, Khatereh
Sloutsky, Alexander
Strongin, Alex Y.
Embargo Expiration Date
Abstract

Mycobacterium tuberculosis is the causative agent of human tuberculosis (TB). Mycobacterial secretory protein ESAT-6 induces matrix metalloproteinase (MMP)-9 in epithelial cells neighboring infected macrophages. MMP-9 then enhances recruitment of uninfected macrophages, which contribute to nascent granuloma maturation and bacterial growth. Disruption of MMP-9 function attenuates granuloma formation and bacterial growth. The abundant mycobacterial 65 kDa heat shock protein (HSP65) chaperone is the major target for the immune response and a critical component in M. tuberculosis adhesion to macrophages. We hypothesized that HSP65 is susceptible to MMP-9 proteolysis and that the resulting HSP65 immunogenic peptides affect host adaptive immunity. To identify MMPs that cleave HSP65, we used MMP-2 and MMP-9 gelatinases, the simple hemopexin domain MMP-8, membrane-associated MMP-14, MMP-15, MMP-16 and MMP-24, and glycosylphosphatidylinositol-linked MMP-17 and MMP-25. We determined both the relative cleavage efficiency of MMPs against the HSP65 substrate and the peptide sequence of the cleavage sites. Cleavage of the unstructured PAGHG474L C-terminal region initiates the degradation of HSP65 by MMPs. This initial cleavage destroys the substrate-binding capacity of the HSP65 chaperone. Multiple additional cleavages of the unfolded HSP65 then follow. MMP-2, MMP-8, MMP-14, MMP-15 and MMP-16, in addition to MMP-9, generate the known highly immunogenic N-terminal peptide of HSP65. Based on our biochemical data, we now suspect that MMP proteolysis of HSP65 in vivo, including MMP-9 proteolysis, also results in the abundant generation of the N-terminal immunogenic peptide and that this peptide, in addition to intact HSP65, contributes to the complex immunomodulatory interplay in the course of TB infection.

Source

FEBS J. 2011 Sep;278(18):3277-86. doi: 10.1111/j.1742-4658.2011.08244.x. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1111/j.1742-4658.2011.08244.x
PubMed ID
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Distribution License