Loading...
Thumbnail Image
Publication

Mineralization of Biomaterials for Bone Tissue Engineering

Wu, Xinchen
Walsh, Kierra
Hoff, Brianna L.
Camci-Unal, Gulden
Embargo Expiration Date
Link to Full Text
Abstract

Mineralized biomaterials have been demonstrated to enhance bone regeneration compared to their non-mineralized analogs. As non-mineralized scaffolds do not perform as well as mineralized scaffolds in terms of their mechanical and surface properties, osteoconductivity and osteoinductivity, mineralization strategies are promising methods in the development of functional biomimetic bone scaffolds. In particular, the mineralization of three-dimensional (3D) scaffolds has become a promising approach for guided bone regeneration. In this paper, we review the major approaches used for mineralizing tissue engineering constructs. The resulting scaffolds provide minerals chemically similar to the inorganic component of natural bone, carbonated apatite, Ca5(PO4,CO3)3(OH). In addition, we discuss the characterization techniques that are used to characterize the mineralized scaffolds, such as the degree of mineralization, surface characteristics, mechanical properties of the scaffolds, and the chemical composition of the deposited minerals. In vitro cell culture studies show that the mineralized scaffolds are highly osteoinductive. We also summarize, based on literature examples, the applications of 3D mineralized constructs, as well as the rationale behind their use. The mineralized scaffolds have improved bone regeneration in animal models due to the enhanced mechanical properties and cell recruitment capability making them a preferable option for bone tissue engineering over non-mineralized scaffolds.

Source

Wu X, Walsh K, Hoff BL, Camci-Unal G. Mineralization of Biomaterials for Bone Tissue Engineering. Bioengineering (Basel). 2020 Oct 20;7(4):E132. doi: 10.3390/bioengineering7040132. PMID: 33092121. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.3390/bioengineering7040132
PubMed ID
33092121
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).