Investigating the Role of Mutant Huntingtin mRNA in Huntington’s Disease
Ly, Socheata
Citations
Authors
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
Mutant mRNA and protein both contribute to the clinical manifestation of many repeat-associated neurodegenerative and neuromuscular disorders. The presence of nuclear RNA clusters is a feature shared amongst these diseases, such as C9ORF72/ALS and myotonic dystrophy 1/2 (DM1/2); however, this pathological hallmark has not been conclusively demonstrated in Huntington’s disease (HD) in vivo. Investigations into HD – caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene – have largely focused on toxic protein gain-of-function as a disease-causing feature, with fewer studies investigating the role of mutant HTT mRNA in pathology or pathogenesis.
Here we report that in two HD mouse models, YAC128 and BACHD-97Q-ΔN17, mutant HTT mRNA is preferentially retained in the nucleus in vivo. Furthermore, we observed the early, widespread formation of large mutant HTT mRNA clusters (approximately 0.6 to 5 µm3 in size) present in over 50-75% of striatal and cortical neurons. Affected cells were limited to one cluster at most. Endogenous wild-type mouse Htt or human HTT mRNA containing 31 or fewer repeats did not form clusters. Additionally, the aberrantly spliced N-terminal exon 1-intron 1 RNA fragment, HTT1a, also formed clusters that fully co-localized with the mutant HTT mRNA clusters. These results suggest that multiple repeat-containing transcripts can coalesce to form a single cluster in a given cell. Treating YAC128 mice with antisense oligonucleotides efficiently silenced individual HTT mRNA foci but had limited impact on clusters. Our findings identify mutant HTT mRNA clustering as an early, robust molecular signature of HD, further supporting HD as a repeat expansion disease with suspected mRNA involvement.