Loading...
Thumbnail Image
Publication

Increased cell-intrinsic excitability induces synaptic changes in new neurons in the adult dentate gyrus that require npas4

Sim, Shuyin
Antolin, Salome
Lin, Chia-Wei
Lin, Yingxi
Lois, Carlos
Embargo Expiration Date
Abstract

Electrical activity regulates the manner in which neurons mature and form connections to each other. However, it remains unclear whether increased single-cell activity is sufficient to alter the development of synaptic connectivity of that neuron or whether a global increase in circuit activity is necessary.

To address this question, we genetically increased neuronal excitability of in vivo individual adult-born neurons in the mouse dentate gyrus via expression of a voltage-gated bacterial sodium channel. We observed that increasing the excitability of new neurons in an otherwise unperturbed circuit leads to changes in both their input and axonal synapses.

Furthermore, the activity-dependent transcription factor Npas4 is necessary for the changes in the input synapses of these neurons, but it is not involved in changes to their axonal synapses. Our results reveal that an increase in cell-intrinsic activity during maturation is sufficient to alter the synaptic connectivity of a neuron with the hippocampal circuit and that Npas4 is required for activity-dependent changes in input synapses.

Source

J Neurosci. 2013 May 1;33(18):7928-40. doi: 10.1523/JNEUROSCI.1571-12.2013. Link to article on publisher's site.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1523/JNEUROSCI.1571-12.2013
PubMed ID
23637184
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright 2013 the authors. Publisher PDF posted as allowed by the publisher's author rights policy at http://www.jneurosci.org/site/misc/ifa_policies.xhtml#copyright.
Distribution License