Loading...
Thumbnail Image
Publication

Chemically Modified Oligonucleotides Silence Mutant SPTLC1 in an in vitro Model of HSAN1

Karnam, Havisha Bindu
Citations
Altmetric:
Student Authors
Faculty Advisor
Robert H. Brown, Jr.
Academic Program
MD/PhD
UMass Chan Affiliations
Document Type
Master's Thesis
Publication Date
2018-09-05
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a monogenic, autosomal dominantly inherited, neurodegenerative disorder resulting in loss of pain and temperature sensation in the distal limbs. HSAN1 is caused by point mutations in a single allele of serine palmitoyltransferase long chain base 1 (SPTLC1), resulting in production of neurotoxic deoxysphingolipids (dSLs). Oligonucleotide therapeutics (ONTs) can be used to downregulate the mutant allele and/or the wild type allele and thus are viable treatment strategies. We investigated the ability of two classes of ONTs, short interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs), to downregulate SPTLC1 in an in vitro model of HSAN1 derived from the C133W mouse model overexpressing mutant hamster SPTLC1. We screened a panel of siRNAs and ASOs targeting mutant hamster SPTLC1 and identified four lead compounds. We demonstrated these compounds’ ability to reduce mutant hamster SPLTC1 and/or wild type mouse SPTLC1 mRNA in CHO cells and C57BL/6J embryonic mouse primary cortical neurons. We then showed that these compounds downregulate hamster and mouse SPTLC1 mRNA and protein in embryonic primary cortical neuron cultures derived from C133W mice. These compounds demonstrate therapeutic potential and should be developed further in vivo.

Source
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.13028/reay-dj91
PubMed ID
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright is held by the author, with all rights reserved.
Distribution License