Loading...
Thumbnail Image
Publication

Regulation of Metabolism by Hepatic OXPHOS: A Dissertation

Akie, Thomas E.
Citations
Altmetric:
Student Authors
Faculty Advisor
Marcus P. Cooper, MD
Academic Program
MD/PhD
UMass Chan Affiliations
Document Type
Doctoral Dissertation
Publication Date
2015-10-02
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract

Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent issue in the modern world, predisposing patients to serious pathology such as cirrhosis and hepatocellular carcinoma. Mitochondrial dysfunction, and in particular, diminished hepatic oxidative phosphorylation (OXPHOS) capacity, have been observed in NAFLD livers, which may participate in NAFLD pathogenesis.

To examine the role of OXPHOS in NAFLD, we generated a model of enhanced hepatic OXPHOS using mice with liver-specific transgenic expression of LRPPRC, a protein which activates mitochondrial transcription and augments OXPHOS capacity. When challenged with high-fat feeding, mice with enhanced hepatic OXPHOS were protected from the development of liver steatosis and inflammation, critical components in the pathogenesis of NAFLD. This protection corresponded to increased liver and whole-body insulin sensitivity. Moreover, mice with enhanced hepatic OXPHOS have increased availability of oxidized NAD+, which promotes complete fatty acid oxidation in hepatocytes.

Interestingly, mice with enhanced hepatic OXPHOS were also protected from obesogenic effects of long-term high-fat feeding. Consistent with this, enhanced hepatic OXPHOS increased energy expenditure and adipose tissue oxidative gene expression, suggesting a communication between the liver and adipose tissue to promote thermogenesis. Examination of pro-thermogenic molecules revealed altered bile acid composition in livers and serum of LRPPRC transgenic mice. These mice had increased expression of bile acid synthetic enzymes, genes which are induced by NAD+ dependent deacetylase SIRT1 activation of the transcriptional co-regulator PGC-1a. These findings suggest that enhanced hepatic OXPHOS transcriptionally regulates bile acid synthesis and dictates whole-body energy expenditure, culminating in protection from obesity.

Source
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.13028/M2388V
PubMed ID
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright is held by the author, with all rights reserved.
Distribution License