Nanoparticle delivery of innate immune agonists combines with senescence-inducing agents to mediate T cell control of pancreatic cancer [preprint]
Chibaya, Loretah ; Lusi, Christina F ; DeMarco, Kelly D ; Kane, Griffin I ; Brassil, Meghan L ; Parikh, Chaitanya N ; Murphy, Katherine C ; Li, Junhui ; Naylor, Tiana E ; Cerrutti, Julia ... show 6 more
Citations
Student Authors
Katherine C Murphy
Jessica Peura
Faculty Advisor
Academic Program
Document Type
Publication Date
Keywords
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Pancreatic ductal adenocarcinoma has quickly risen to become the 3rd leading cause of cancer-related death. This is in part due to its fibrotic tumor microenvironment (TME) that contributes to poor vascularization and immune infiltration and subsequent chemo- and immunotherapy failure. Here we investigated an innovative immunotherapy approach combining local delivery of STING and TLR4 innate immune agonists via lipid-based nanoparticles (NPs) co-encapsulation with senescence-inducing RAS-targeted therapies that can remodel the immune suppressive PDAC TME through the senescence-associated secretory phenotype. Treatment of transplanted and autochthonous PDAC mouse models with these regimens led to enhanced uptake of NPs by multiple cell types in the PDAC TME, induction of type I interferon and other pro-inflammatory signaling, increased antigen presentation by tumor cells and antigen presenting cells, and subsequent activation of both innate and adaptive immune responses. This two-pronged approach produced potent T cell-driven and Type I interferon-dependent tumor regressions and long-term survival in preclinical PDAC models. STING and TLR4-mediated Type I interferon signaling were also associated with enhanced NK and CD8+ T cell immunity in human PDAC. Thus, combining localized immune agonist delivery with systemic tumor-targeted therapy can synergize to orchestrate a coordinated innate and adaptive immune assault to overcome immune suppression and activate durable anti-tumor T cell responses against PDAC.
Source
Chibaya L, Lusi CF, DeMarco KD, Kane GI, Brassil ML, Parikh CN, Murphy KC, Li J, Naylor TE, Cerrutti J, Peura J, Pitarresi JR, Zhu LJ, Fitzgerald KA, Atukorale PU, Ruscetti M. Nanoparticle delivery of innate immune agonists combines with senescence-inducing agents to mediate T cell control of pancreatic cancer. bioRxiv [Preprint]. 2023 Sep 18:2023.09.18.558307. doi: 10.1101/2023.09.18.558307. PMID: 37790484; PMCID: PMC10542133.
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.