Identification of WNK1 as a substrate of Akt/protein kinase B and a negative regulator of insulin-stimulated mitogenesis in 3T3-L1 cells
Jiang, Zhen Y. ; Zhou, Qiong L. ; Holik, John ; Patel, Shraddha ; Leszyk, John D. ; Coleman, Kerri ; Chouinard, My T. ; Czech, Michael P.
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Keywords
3T3-L1 Cells
Adipocytes
Androstadienes
Animals
Apoptosis
Binding Sites
Biological Transport
Cell Membrane
Cell Proliferation
Dose-Response Relationship, Drug
Electrophoresis, Polyacrylamide Gel
Gene Expression Regulation
*Gene Expression Regulation, Enzymologic
Glucose
Humans
Immunoblotting
Immunoprecipitation
Insulin
Isoenzymes
Mass Spectrometry
Mice
Peptides
Phosphorylation
Protein Kinase C
Protein Structure, Tertiary
Protein Transport
Protein-Serine-Threonine Kinases
Proto-Oncogene Proteins
Proto-Oncogene Proteins c-akt
RNA Interference
RNA, Small Interfering
Receptor, Insulin
Ribosomal Protein S6 Kinases, 70-kDa
Signal Transduction
Sirolimus
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Thymidine
Time Factors
Transfection
Trypsin
Life Sciences
Medicine and Health Sciences
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Insulin signaling through protein kinase Akt/protein kinase B (PKB), a downstream element of the phosphatidylinositol 3-kinase (PI3K) pathway, regulates diverse cellular functions including metabolic pathways, apoptosis, mitogenesis, and membrane trafficking. To identify Akt/PKB substrates that mediate these effects, we used antibodies that recognize phosphopeptide sites containing the Akt/PKB substrate motif (RXRXX(p)S/T) to immunoprecipitate proteins from insulin-stimulated adipocytes. Tryptic peptides from a 250-kDa immunoprecipitated protein were identified as the protein kinase WNK1 (with no lysine) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, consistent with a recent report that WNK1 is phosphorylated on Thr60 in response to insulin-like growth factor I. Insulin treatment of 3T3-L1 adipocytes stimulated WNK1 phosphorylation, as detected by immunoprecipitation with antibody against WNK1 followed by immunoblotting with the anti-phosphoAkt substrate antibody. WNK1 phosphorylation induced by insulin was unaffected by rapamycin, an inhibitor of p70 S6 kinase pathway but abolished by the PI3K inhibitor wortmannin. RNA interference-directed depletion of Akt1/PKB alpha and Akt2/PKB beta attenuated insulin-stimulated WNK1 phosphorylation, but depletion of protein kinase C lambda did not. Whereas small interfering RNA-induced loss of WNK1 protein did not significantly affect insulin-stimulated glucose transport in 3T3-L1 adipocytes, it significantly enhanced insulin-stimulated thymidine incorporation by about 2-fold. Furthermore, depletion of WNK1 promoted serum-stimulated cell proliferation of 3T3-L1 preadipocytes, as evidenced by a 36% increase in cell number after 48 h in culture. These data suggest that WNK1 is a physiologically relevant target of insulin signaling through PI3K and Akt/PKB and functions as a negative regulator of insulin-stimulated mitogenesis.
Source
J Biol Chem. 2005 Jun 3;280(22):21622-8. Epub 2005 Mar 30. Link to article on publisher's site