KAYAK-alpha modulates circadian transcriptional feedback loops in Drosophila pacemaker neurons
Ling, Jinli ; Dubruille, Raphaelle ; Emery, Patrick
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Circadian rhythms are generated by well-conserved interlocked transcriptional feedback loops in animals. In Drosophila, the dimeric transcription factor CLOCK/CYCLE (CLK/CYC) promotes period (per), timeless (tim), vrille (vri), and PAR-domain protein 1 (Pdp1) transcription. PER and TIM negatively feed back on CLK/CYC transcriptional activity, whereas VRI and PDP1 negatively and positively regulate Clk transcription, respectively. Here, we show that the alpha isoform of the Drosophila FOS homolog KAYAK (KAY) is required for normal circadian behavior. KAY-alpha downregulation in circadian pacemaker neurons increases period length by 1.5 h. This behavioral phenotype is correlated with decreased expression of several circadian proteins. The strongest effects are on CLK and the neuropeptide PIGMENT DISPERSING FACTOR, which are both under VRI and PDP1 control. Consistently, KAY-alpha can bind to VRI and inhibit its interaction with the Clk promoter. Interestingly, KAY-alpha can also repress CLK activity. Hence, in flies with low KAY-alpha levels, CLK derepression would partially compensate for increased VRI repression, thus attenuating the consequences of KAY-alpha downregulation on CLK targets. We propose that the double role of KAY-alpha in the two transcriptional loops controlling Drosophila circadian behavior brings precision and stability to their oscillations.
Source
J Neurosci. 2012 Nov 21;32(47):16959-70. doi: 10.1523/JNEUROSCI.1888-12.2012. Link to article on publisher's site
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
First author Jinli Ling is a doctoral student in the Neuroscience Program in the Morningside Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.