Loading...
Thumbnail Image
Publication

A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types [preprint]

Libbrecht, Maxwell Wing
Rodriguez, Oscar
Weng, Zhiping
Hoffman, Michael
Bilmes, Jeffrey A.
Noble, William Stafford
Embargo Expiration Date
Link to Full Text
Abstract

Semi-automated genome annotation methods such as Segway enable understanding of chromatin activity. Here we present chromatin state annotations of 164 human cell types using 1,615 genomics data sets. To produce these annotations, we developed a fully-automated annotation strategy in which we train separate unsupervised annotation models on each cell type and use a machine learning classifier to automate the state interpretation step. Using these annotations, we developed a measure of the functional importance of each genomic position called the "functionality score," which allows us to aggregate information across cell types into a multi-cell type view. This score provides a measure of importance directly attributable to a specific activity in a specific set of cell types. In contrast to evolutionary conservation, this measure is not biased to detect only elements shared with related species. Using the functionality score, we combined all our annotations into a single cell type-agnostic encyclopedia that catalogs all human functional regulatory elements, enabling easy and intuitive interpretation of the effect of genome variants on phenotype, such as in disease-associated, evolutionarily conserved or positively selected loci. These resources, including cell type-specific annotations, enyclopedia, and a visualization server, are available at http://noble.gs.washington.edu/proj/encyclopedia.

Source

bioRxiv 086025; doi: https://doi.org/10.1101/086025. Link to preprint on bioRxiv service.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1101/086025
PubMed ID
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources

Now published in Genome Biol. 2019 Aug 28;20(1):180. doi: 10.1186/s13059-019-1784-2.

Related Resources
Repository Citation
Rights
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.