Publication

Activity-regulated N-cadherin endocytosis

Tai, Chin-Yin
Mysore, Shreesh P.
Chiu, Cindy
Schuman, Erin M.
Citations
Altmetric:
Student Authors
Faculty Advisor
Academic Program
Document Type
Journal Article
Publication Date
2007-06-08
Keywords
Subject Area
Embargo Expiration Date
Abstract

Enduring forms of synaptic plasticity are thought to require ongoing regulation of adhesion molecules, such as N-cadherin, at synaptic junctions. Little is known about the activity-regulated trafficking of adhesion molecules. Here we demonstrate that surface N-cadherin undergoes a surprisingly high basal rate of internalization. Upon activation of NMDA receptors (NMDAR), the rate of N-cadherin endocytosis is significantly reduced, resulting in an accumulation of N-cadherin in the plasma membrane. Beta-catenin, an N-cadherin binding partner, is a primary regulator of N-cadherin endocytosis. Following NMDAR stimulation, beta-catenin accumulates in spines and exhibits increased binding to N-cadherin. Overexpression of a mutant form of beta-catenin, Y654F, prevents the NMDAR-dependent regulation of N-cadherin internalization, resulting in stabilization of surface N-cadherin molecules. Furthermore, the stabilization of surface N-cadherin blocks NMDAR-dependent synaptic plasticity. These results indicate that NMDAR activity regulates N-cadherin endocytosis, providing a mechanistic link between structural plasticity and persistent changes in synaptic efficacy.

Source

Neuron. 2007 Jun 7;54(5):771-85. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1016/j.neuron.2007.05.013
PubMed ID
17553425
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Distribution License