Biodistribution and safety of a single rAAV3B-AAT vector for silencing and replacement of alpha-1 antitrypsin in Cynomolgus macaques
Blackwood, Meghan ; Gruntman, Alisha M ; Tang, Qiushi ; Pires-Ferreira, Debora ; Reil, Darcy ; Kondratov, Oleksandr ; Marsic, Damien ; Zolotukhin, Sergei ; Gernoux, Gwladys ; Keeler, Allison M ... show 2 more
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Alpha-1 antitrypsin deficiency (AATD) is characterized by both chronic lung disease due to loss of wild-type AAT (M-AAT) antiprotease function and liver disease due to toxicity from delayed secretion, polymerization, and aggregation of misfolded mutant AAT (Z-AAT). The ideal gene therapy for AATD should therefore comprise both endogenous Z-AAT suppression and M-AAT overexpression. We designed a dual-function rAAV3B (df-rAAV3B) construct, which was effective at transducing hepatocytes, resulting in a considerable decrease of Z-AAT levels and safe M-AAT augmentation in mice. We optimized df-rAAV3B and created two variants, AAV3B-E12 and AAV3B-G3, to simultaneously enhance the concentration of M-AAT in the bloodstream to therapeutic levels and silence endogenous AAT liver expression in cynomolgus monkeys. Our results demonstrate that AAV3b-WT, AAV3B-E12, and AAV3B-G3 were able to transduce the monkey livers and achieve high M-AAT serum levels efficiently and safely. In this nondeficient model, we did not find downregulation of endogenous AAT. However, the dual-function vector did serve as a potentially "liver-sparing" alternative for high-dose liver-mediated AAT gene replacement in the context of underlying liver disease.
Source
Blackwood M, Gruntman AM, Tang Q, Pires-Ferreira D, Reil D, Kondratov O, Marsic D, Zolotukhin S, Gernoux G, Keeler AM, Mueller C, Flotte TR. Biodistribution and safety of a single rAAV3B-AAT vector for silencing and replacement of alpha-1 antitrypsin in Cynomolgus macaques. Mol Ther Methods Clin Dev. 2024 Jan 30;32(1):101200. doi: 10.1016/j.omtm.2024.101200. PMID: 38445045; PMCID: PMC10914479.