Loading...
Thumbnail Image
Publication

Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling

VanOudenhove, Jennifer J.
Medina, Ricardo F.
Ghule, Prachi N.
Lian, Jane B.
Stein, Janet L.
Zaidi, Sayyed K.
Stein, Gary S.
Embargo Expiration Date
Link to Full Text
Abstract

The transition of human embryonic stem cells (hESCs) from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment.

Source

Stem Cell Reports. 2016 Nov 8;7(5):884-896. doi: 10.1016/j.stemcr.2016.09.006. Epub 2016 Oct 6. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1016/j.stemcr.2016.09.006
PubMed ID
27720906
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
© 2016 The Authors.