Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium
Matsumoto, H. ; Murakami, Y. ; Kataoka, K. ; Notomi, S. ; Mantopoulos, D. ; Trichonas, G. ; Miller, J. W. ; Gregory, M. S. ; Ksander, B R. ; Marshak-Rothstein, Ann ... show 1 more
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Fas ligand (FasL) triggers apoptosis of Fas-positive cells, and previous reports described FasL-induced cell death of Fas-positive photoreceptors following a retinal detachment. However, as FasL exists in membrane-bound (mFasL) and soluble (sFasL) forms, and is expressed on resident microglia and infiltrating monocyte/macrophages, the current study examined the relative contribution of mFasL and sFasL to photoreceptor cell death after induction of experimental retinal detachment in wild-type, knockout (FasL-/-), and mFasL-only knock-in (DeltaCS) mice. Retinal detachment in FasL-/- mice resulted in a significant reduction of photoreceptor cell death. In contrast, DeltaCS mice displayed significantly more apoptotic photoreceptor cell death. Photoreceptor loss in DeltaCS mice was inhibited by a subretinal injection of recombinant sFasL. Thus, Fas/FasL-triggered cell death accounts for a significant amount of photoreceptor cell loss following the retinal detachment. The function of FasL was dependent upon the form of FasL expressed: mFasL triggered photoreceptor cell death, whereas sFasL protected the retina, indicating that enzyme-mediated cleavage of FasL determines, in part, the extent of vision loss following the retinal detachment. Moreover, it also indicates that treatment with sFasL could significantly reduce photoreceptor cell loss in patients with retinal detachment.
Source
Cell Death Dis. 2015 Nov 19;6:e1986. doi: 10.1038/cddis.2015.334. Link to article on publisher's site