Cryo-EM structure of the human cardiac myosin filament [preprint]
Dutta, Debabrata ; Nguyen, Vu ; Campbell, Kenneth S ; Padrón, Raúl ; Craig, Roger
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Keywords
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
Pumping of the heart is powered by filaments of the motor protein myosin, which pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly 1 . Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years 2 . Here, we have solved the structure of the main (cMyBP-C-containing) region of the human cardiac filament to 6 Å resolution by cryo-EM. The reconstruction reveals the architecture of titin and cMyBP-C for the first time, and shows how myosin's motor domains (heads) form 3 different types of motif (providing functional flexibility), which interact with each other and with specific domains of titin and cMyBP-C to dictate filament architecture and regulate function. A novel packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps generate the cardiac super-relaxed state 3 , how titin and cMyBP-C may contribute to length-dependent activation 4 , and how mutations in myosin and cMyBP-C might disrupt interactions, causing disease 5, 6 . A similar structure is likely in vertebrate skeletal myosin filaments. The reconstruction resolves past uncertainties, and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.
Source
Dutta D, Nguyen V, Campbell KS, Padrón R, Craig R. Cryo-EM structure of the human cardiac myosin filament. bioRxiv [Preprint]. 2023 Apr 12:2023.04.11.536274. doi: 10.1101/2023.04.11.536274. PMID: 37090534; PMCID: PMC10120621.
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.
Funding and Acknowledgements
Corresponding Author
Related Resources
Now published in Nature, https://doi.org/10.1038/s41586-023-06691-4