Loading...
Thumbnail Image
Publication

Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits

Bohme, Julia
Martinez, Nuria
Kornfeld, Hardy
Singhal, Amit
Embargo Expiration Date
Link to Full Text
Abstract

Patients with type 2 diabetes (T2D) have a lower risk of Mycobacterium tuberculosis infection, progression from infection to tuberculosis (TB) disease, TB morality and TB recurrence, when being treated with metformin. However, a detailed mechanistic understanding of these protective effects is lacking. Here, we use mass cytometry to show that metformin treatment expands a population of memory-like antigen-inexperienced CD8(+)CXCR3(+) T cells in naive mice, and in healthy individuals and patients with T2D. Metformin-educated CD8(+) T cells have increased (i) mitochondrial mass, oxidative phosphorylation, and fatty acid oxidation; (ii) survival capacity; and (iii) anti-mycobacterial properties. CD8(+) T cells from Cxcr3(-/-) mice do not exhibit this metformin-mediated metabolic programming. In BCG-vaccinated mice and guinea pigs, metformin enhances immunogenicity and protective efficacy against M. tuberculosis challenge. Collectively, these results demonstrate an important function of CD8(+) T cells in metformin-derived host metabolic-fitness towards M. tuberculosis infection.

Source

Böhme J, Martinez N, Li S, Lee A, Marzuki M, Tizazu AM, Ackart D, Frenkel JH, Todd A, Lachmandas E, Lum J, Shihui F, Ng TP, Lee B, Larbi A, Netea MG, Basaraba R, van Crevel R, Newell E, Kornfeld H, Singhal A. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat Commun. 2020 Oct 16;11(1):5225. doi: 10.1038/s41467-020-19095-z. PMID: 33067434; PMCID: PMC7567856. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1038/s41467-020-19095-z
PubMed ID
33067434
Other Identifiers
Notes

Full author list omitted for brevity. For the full list of authors, see article.

Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.