A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver
Zheng, Chunwei ; Liang, Shun-Qing ; Liu, Bin ; Liu, Pengpeng ; Kwan, Suet-Yan ; Wolfe, Scot A ; Xue, Wen
Citations
Student Authors
Faculty Advisor
Academic Program
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Prime editor (PE) has tremendous promise for gene therapy. However, it remains a challenge to deliver PE (>6.3 kb) in vivo. Although PE can be split into two fragments and delivered using dual adeno-associated viruses (AAVs), choice of split sites within Cas9-which affects editing efficiency-is limited due to the large size of PE. Furthermore, overexpressing reverse transcriptase in mammalian cells might disrupt translation termination via its RNase H domain. Here, we developed a compact PE without the RNase H domain that showed editing comparable with full-length PE. With compact PE, we used a Cas9 split site (Glu 573) that supported robust editing in cells (up to 93% of full-length PE) and in mouse liver. We then demonstrated that split-cPE573 delivered by dual-AAV8 efficiently mediated a 3-bp TGA insertion in the Pcsk9 gene in mouse liver. Compact PE without the RNase H domain abolished its binding to peptidyl release factor 1 (eRF1) and mitigated the stop codon readthrough effect observed with full-length PE. This study identifies a compact PE with a flexible split design to advance utility of prime editing in vivo.
Source
Zheng C, Liang SQ, Liu B, Liu P, Kwan SY, Wolfe SA, Xue W. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol Ther. 2022 Mar 2;30(3):1343-1351. doi: 10.1016/j.ymthe.2022.01.005. Epub 2022 Jan 5. PMID: 34998953; PMCID: PMC8899602.