Addressing Bottlenecks of Prime Editing Through Improved pegRNA Designs and Rationally Engineered Prime Editor Variants
Ponnienselvan, Karthikeyan
Citations
Authors
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
Prime editing systems have enabled the incorporation of precise edits within a genome without introducing double strand breaks. With the versatile ability to introduce point mutations, deletions and insertions, prime editors have the ability to correct around 89% of known genetic variants associated with human diseases. However, there are several bottlenecks currently restricting prime editing activity that need to be addressed to further their use as therapeutics. In the first half of this thesis, we address the auto-inhibitory interaction between the PBS and the spacer sequence that affects pegRNA binding efficiency and target recognition. We show that destabilizing this auto-inhibitory interaction by reducing the complementarity between the PBS-spacer region enhances prime editing efficiency. These design parameters were initially fueled by our goal to improve prime editor ribonucleoprotein activity where the auto-inhibitory interaction of the pegRNA is more prominent, but we show that they can be applied to multiple prime editing formats to increase editing rates. In the case of end-protected pegRNAs, we discover that a shorter PBS length with a PBS-target strand melting temperature near 37°C is optimal in mammalian cells. Additionally, we show that a transient cold shock treatment of the cells post PE-pegRNA delivery further increases prime editing outcomes for pegRNAs with optimized PBS lengths. In the first study, we noticed that the prime editor protein had the tendency to aggregate during purification procedures and that the editing rates were still modest in primary cells. MMLV-reverse transcriptase - the prime editor polymerase subunit - requires high intracellular dNTPs levels for efficient polymerization. Prior optimization of the system has been performed in rapidly dividing cell lines like HEK293Ts where dNTP concentration is not a limiting factor. Primary cells that are quiescent or slowly proliferating have tightly regulated intracellular dNTP levels that could limit the reverse transcription process. Therefore, in the second half of this thesis, we address two more bottlenecks of prime editing - solubility of the prime editor protein and the intracellular dNTP concentration. To address that, in the reverse transcriptase domain, we introduced the L435K mutation that improves the solubility of the protein. Additionally, we introduced a V223M mutation that changes the active site of the reverse transcriptase to resemble a lentiviral enzyme that is more efficient in non-dividing cells. We show that this rationally engineered prime editor variant with increased solubility and lower Km to dNTPs, increases editing rates across diverse cell types and in vivo. Finally, we show that targeted SAMHD1 degradation by co-delivery of VPX to increase dNTP concentration in the cell further increases prime editing rates. We believe that addressing these bottlenecks, with the recommendations we describe in this thesis, will contribute to the advancement of prime editor ribonucleoproteins and mRNA for in vivo and ex vivo therapeutics.