Now showing items 41-60 of 211

    • Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains

      Maiti, Atanu; Myint, Wazo; Delviks-Frankenberry, Krista A.; Hou, Shurong; Kanai, Tapan; Balachandran, Vanivilasini; Sierra Rodriguez, Christina; Tripathi, Rashmi; Yilmaz, Nese Kurt; Pathak, Vinay K.; et al. (2020-11-20)
      APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 A and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90 degrees relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn(2+), yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.
    • A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction

      Monir, Ejemel; Li, Qi; Hou, Shurong; Schiller, Zachary; Wallace, Aaron; Amcheslavsky, Alla; Yilmaz, Nese Kurt; Toomey, Jacqueline R.; Schneider, Ryan; Ramchetty, Anudeep S.; et al. (2020-08-21)
      COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity, or as a therapeutic, has yet been developed to SARS-CoV-2. In this study, we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks ACE2 receptor binding, by overlapping the ACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in 293 cells expressing ACE2. When converted to secretory IgA, MAb326 also neutralizes authentic SARS-CoV-2 virus while the IgG isotype shows no neutralization. Our results suggest that SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.
    • Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes

      Cai, Erica P.; Ishikawa, Yuki; Zhang, Wei; Leite, Nayara C.; Li, Jian; Hou, Shurong; Kiaf, Badr; Hollister-Lock, Jennifer; Yilmaz, Nese Kurt; Schiffer, Celia A.; et al. (2020-07-27)
      Type 1 diabetes (T1D) is caused by the autoimmune destruction of pancreatic beta cells. Pluripotent stem cells can now be differentiated into beta cells, thus raising the prospect of a cell replacement therapy for T1D. However, autoimmunity would rapidly destroy newly transplanted beta cells. Using a genome-scale CRISPR screen in a mouse model for T1D, we show that deleting RNLS, a genome-wide association study candidate gene for T1D, made beta cells resistant to autoimmune killing. Structure-based modelling identified the U.S. Food and Drug Administration-approved drug pargyline as a potential RNLS inhibitor. Oral pargyline treatment protected transplanted beta cells in diabetic mice, thus leading to disease reversal. Furthermore, pargyline prevented or delayed diabetes onset in several mouse models for T1D. Our results identify RNLS as a modifier of beta cell vulnerability and as a potential therapeutic target to avert beta cell loss in T1D.
    • Structural Analysis of Potent Hybrid HIV-1 Protease Inhibitors Containing Bis-Tetrahydrofuran in a Pseudo-Symmetric Dipeptide Isostere

      Rusere, Linah; Lockbaum, Gordon J.; Henes, Mina; Lee, Sook-Kyung; Spielvogel, Ean; Rao, Desaboini Nageswara; Kosovrasti, Klajdi; Nalivaika, Ellen A.; Swanstrom, Ronald; Yilmaz, Nese Kurt; et al. (2020-07-16)
      The design, synthesis, and X-ray structural analysis of hybrid HIV-1 protease inhibitors (PIs) containing bis-tetrahydrofuran (bis-THF) in a pseudo-C2-symmetric dipeptide isostere are described. A series of PIs were synthesized by incorporating bis-THF of darunavir on either side of the Phe-Phe isostere of lopinavir in combination with hydrophobic amino acids on the opposite P2/P2' position. Structure-activity relationship studies indicated that the bis-THF moiety can be attached at either the P2 or P2' position without significantly affecting potency. However, the group on the opposite P2/P2' position had a dramatic effect on potency depending on the size and shape of the side chain. Cocrystal structures of inhibitors with wild-type HIV-1 protease revealed that the bis-THF moiety retained similar interactions as observed in the darunavir-protease complex regardless of position on the Phe-Phe isostere. Analyses of cocrystal structures and molecular dynamics simulations provide insights for optimizing HIV-1 PIs containing bis-THF in non-sulfonamide dipeptide isosteres.
    • Deciphering complex mechanisms of resistance and loss of potency through coupled molecular dynamics and machine learning [preprint]

      Leidner, Florian; Yilmaz, Nese Kurt; Schiffer, Celia A. (2020-06-09)
      Drug resistance threatens many critical therapeutics through mutations in the drug target. The molecular mechanisms by which combinations of mutations, especially involving those distal from the active site, alter drug binding to confer resistance are poorly understood and thus difficult to counteract. A strategy coupling parallel molecular dynamics simulations and machine learning to identify conserved mechanisms underlying resistance was developed. A series of 28 HIV-1 protease variants with up to 24 varied substitutions were used as a rigorous model of this strategy. Many of the mutations were distal from the active site and the potency to darunavir varied from low pM to near μM. With features extracted from molecular dynamics simulations, elastic network machine learning was applied to correlate physical interactions at the molecular level with potency loss. This fit to within 1 kcal/mol of experimental potency for both the training and test sets, outperforming MM/GBSA calculations. Feature reduction resulted in a model with 4 specific features that correspond to interactions critical for potency regardless of enzyme variant. These predictive features throughout the enzyme would not have been identified without dynamics and machine learning and specifically varied with potency. This approach enables capturing the conserved dynamic molecular mechanisms by which complex combinations of mutations confer resistance and identifying critical interactions which serve as bellwethers over a wide range of inhibitor potency. Machine learning models leveraging molecular dynamics can thus elucidate mechanisms that confer loss of affinity due to variations distal from the active site, such as in drug resistance.
    • IgA MAb blocks SARS-CoV-2 Spike-ACE2 interaction providing mucosal immunity [preprint]

      Monir, Ejemel; Li, Qi; Hou, Shurong; Schiller, Zachary; Wallace, Aaron; Amcheslavsky, Alla; Yilmaz, Nese Kurt; Toomey, Jacqueline R.; Schneider, Ryan; Cavacini, Lisa; et al. (2020-05-15)
      COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity or as a therapeutic has yet been developed to SARS-CoV-2. In this study we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks hACE2 receptor binding, by completely overlapping the hACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in human epithelial cells expressing hACE2. SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.
    • CryoEM Structure of CtBP2 Confirms Tetrameric Architecture [preprint]

      Jecrois, Anne M.; Dcona, M. Michael; Deng, Xiaovan; Bandyopadhyay, Dipankar; Grossman, Steven R.; Schiffer, Celia A.; Royer, William E. (2020-04-07)
      C-terminal binding proteins 1 and 2 (CtBP1 and CtBP2) are transcriptional regulators that activate or repress many genes involved in cellular development, apoptosis and metastasis. CtBP proteins are activated under hypoxic conditions where NAD(H) levels tend to be higher. NADH-dependent activation of CtBP2 has direct implication in multiple types of cancers and poor patient prognosis. Previous studies have proposed dimeric CtBP as the relevant oligomeric state, however our studies with multi-angle light scattering have shown that the primary effect of NADH binding is to promote the assembly of two CtBP dimers into tetramers. Here, we present the cryoEM structures of two different constructs of CtBP2 corroborating that the native state of CtBP2 in the presence of NADH is indeed tetrameric. The physiological relevance of tetrameric CtBP2 was tested in HCT116; CtBP2 -/- cells transfected with tetramer destabilizing mutants. Mutants that inhibit tetramer formation show a decrease in expression of the CtBP transcriptional target TIAM1 and exhibit a decrease in the ability to promote cell migration. Together with our cryoEM studies, these results highlight the tetramer as the functional oligomeric form of CtBP2.
    • Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors

      Matthew, Ashley N.; Zephyr, Jacqueto; Desaboini, Nageswara Rao; Henes, Mina; Kamran, Wasih; Kosovrasti, Klajdi; Hedger, Adam; Lockbaum, Gordon J.; Timm, Jennifer; Ali, Akbar; et al. (2020-03-31)
      Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve > 95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.
    • Optimizing the refinement of merohedrally twinned P61 HIV-1 protease-inhibitor cocrystal structures

      Lockbaum, Gordon J.; Leidner, Florian; Royer, William E.; Yilmaz, Nese Kurt; Schiffer, Celia A. (2020-03-01)
      Twinning is a crystal-growth anomaly in which protein monomers exist in different orientations but are related in a specific way, causing diffraction reflections to overlap. Twinning imposes additional symmetry on the data, often leading to the assignment of a higher symmetry space group. Specifically, in merohedral twinning, reflections from each monomer overlap and require a twin law to model unique structural data from overlapping reflections. Neglecting twinning in the crystallographic analysis of quasi-rotationally symmetric homo-oligomeric protein structures can mask the degree of structural non-identity between monomers. In particular, any deviations from perfect symmetry will be lost if higher than appropriate symmetry is applied during crystallographic analysis. Such cases warrant choosing between the highest symmetry space group possible or determining whether the monomers have distinguishable structural asymmetries and thus require a lower symmetry space group and a twin law. Using hexagonal cocrystals of HIV-1 protease, a C2-symmetric homodimer whose symmetry is broken by bound ligand, it is shown that both assigning a lower symmetry space group and applying a twin law during refinement are critical to achieving a structural model that more accurately fits the electron density. By re-analyzing three recently published HIV-1 protease structures, improvements in nearly every crystallographic metric are demonstrated. Most importantly, a procedure is demonstrated where the inhibitor can be reliably modeled in a single orientation. This protocol may be applicable to many other homo-oligomers in the PDB.
    • Molecular and Structural Mechanism of Pan-Genotypic HCV NS3/4A Protease Inhibition by Glecaprevir

      Timm, Jennifer; Kosovrasti, Klajdi; Henes, Mina; Leidner, Florian; Hou, Shurong; Ali, Akbar; Yilmaz, Nese Kurt; Schiffer, Celia A. (2020-02-21)
      Hepatitis C virus, causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well-known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes 1a, 3a, 4a, and 5a in complex with GLE. Comparison with the highly similar grazoprevir indicated the mechanism of GLE's drastic improvement in potency. We found that, while GLE is highly potent against wild-type NS3/4A of all genotypes, specific resistance-associated substitutions (RASs) confer orders of magnitude loss in inhibition. Our crystal structures reveal molecular mechanisms behind pan-genotypic activity of GLE, including potency loss due to RASs at D168. Our structures permit for the first time analysis of changes due to polymorphisms among genotypes, providing insights into design principles that can aid future drug development and potentially can be extended to other proteins.
    • Characterizing protein-ligand binding using atomistic simulation and machine learning: Application to drug resistance in HIV-1 protease

      Whitfield, Troy W.; Ragland, Debra A.; Zeldovich, Konstantin B.; Schiffer, Celia A. (2019-12-26)
      Over the past several decades, atomistic simulations of biomolecules, whether carried out using molecular dynamics or Monte Carlo techniques, have provided detailed insights into their function. Comparing the results of such simulations for a few closely related systems has guided our understanding of the mechanisms by which changes like ligand binding or mutation can alter function. The general problem of detecting and interpreting such mechanisms from simulations of many related systems, however, remains a challenge. This problem is addressed here by applying supervised and unsupervised machine learning techniques to a variety of thermodynamic observables extracted from molecular dynamics simulations of different systems. As an important test case, these methods are applied to understanding the evasion by HIV-1 protease of darunavir, a potent inhibitor to which resistance can develop via the simultaneous mutation of multiple amino acids. Complex mutational patterns have been observed among resistant strains, presenting a challenge to developing a mechanistic picture of resistance in the protease. In order to dissect these patterns and gain mechanistic insight on the role of specific mutations, molecular dynamics simulations were carried out on a collection of HIV-1 protease variants, chosen to include highly resistant strains and susceptible controls, in complex with darunavir. Using a machine learning approach that takes advantage of the hierarchical nature in the relationships among sequence, structure and function, an integrative analysis of these trajectories reveals key details of the resistance mechanism, including changes in protein structure, hydrogen bonding and protein-ligand contacts.
    • APOBEC3s: DNA-editing human cytidine deaminases

      Silvas, Tania V.; Schiffer, Celia A. (2019-09-01)
      Nucleic acid editing enzymes are essential components of the human immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins. Among these enzymes are cytidine deaminases of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) super family, each with unique target sequence specificity and subcellular localization. We focus on the DNA-editing APOBEC3 enzymes that have recently attracted attention because of their involvement in cancer and potential in gene-editing applications. We review and compare the crystal structures of APOBEC3 (A3) domains, binding interactions with DNA, substrate specificity, and activity. Recent crystal structures of A3A and A3G bound to ssDNA have provided insights into substrate binding and specificity determinants of these enzymes. Still many unknowns remain regarding potential cooperativity, nucleic acid interactions, and systematic quantification of substrate preference of many APOBEC3s, which are needed to better characterize the biological functions and consequences of misregulation of these gene editors.
    • Mechanism for APOBEC3G catalytic exclusion of RNA and non-substrate DNA

      Solomon, William C.; Myint, Wazo; Hou, Shurong; Kanai, Tapan; Tripathi, Rashmi; Yilmaz, Nese Kurt; Schiffer, Celia A.; Matsuo, Hiroshi (2019-08-22)
      The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of substrate ssDNA from non-substrate. Using 2'-deoxy-2'-fluorine substituted cytidines, we show that a 2'-endo sugar conformation of the target deoxycytidine is favored for substrate binding and deamination. Trajectories of the MD simulation indicate that a ribose 2'-hydroxyl group destabilizes the pi-pi stacking of the target cytosine and H257, resulting in dislocation of the target cytosine base from the catalytic position. Interestingly, APOBEC3A, which can deaminate ribocytidines, retains the ribocytidine in the catalytic position throughout the MD simulation. Our results indicate that A3Gctd catalytic selectivity against RNA is dictated by both the sugar conformation and 2'-hydroxyl group.
    • HIV-1 Protease Inhibitors Incorporating Stereochemically Defined P2' Ligands to Optimize Hydrogen Bonding in the Substrate Envelope

      Rusere, Linah N.; Lockbaum, Gordon J.; Lee, Sook-Kyung; Henes, Mina; Kosovrasti, Klajdi; Spielvogel, Ean; Nalivaika, Ellen A.; Swanstrom, Ronald; Yilmaz, Nese Kurt; Schiffer, Celia A.; et al. (2019-08-21)
      A structure-guided design strategy was used to improve the resistance profile of HIV-1 protease inhibitors by optimizing hydrogen bonding and van der Waals interactions with the protease while staying within the substrate envelope. Stereoisomers of 4-(1-hydroxyethyl)benzene and 4-(1,2-dihydroxyethyl)benzene moieties were explored as P2' ligands providing pairs of diastereoisomers epimeric at P2', which exhibited distinct potency profiles depending on the configuration of the hydroxyl group and size of the P1' group. While compounds with the 4-(1-hydroxyethyl)benzene P2' moiety maintained excellent antiviral potency against a panel of multidrug-resistant HIV-1 strains, analogues with the polar 4-(1,2-dihydroxyethyl)benzene moiety were less potent, and only the (R)-epimer incorporating a larger 2-ethylbutyl P1' group showed improved potency. Crystal structures of protease-inhibitor complexes revealed strong hydrogen bonding interactions of both (R)- and (S)-stereoisomers of the hydroxyethyl group with Asp30'. Notably, the (R)-dihydroxyethyl group was involved in a unique pattern of direct hydrogen bonding interactions with the backbone amides of Asp29' and Asp30'. The SAR data and analysis of crystal structures provide insights for optimizing these promising HIV-1 protease inhibitors.
    • Target-Specific Prediction of Ligand Affinity with Structure-Based Interaction Fingerprints

      Leidner, Florian; Yilmaz, Nese Kurt; Schiffer, Celia A. (2019-08-19)
      Discovery and optimization of small molecule inhibitors as therapeutic drugs have immensely benefited from rational structure-based drug design. With recent advances in high-resolution structure determination, computational power, and machine learning methodology, it is becoming more tractable to elucidate the structural basis of drug potency. However, the applicability of machine learning models to drug design is limited by the interpretability of the resulting models in terms of feature importance. Here, we take advantage of the large number of available inhibitor-bound HIV-1 protease structures and associated potencies to evaluate inhibitor diversity and machine learning models to predict ligand affinity. First, using a hierarchical clustering approach, we grouped HIV-1 protease inhibitors and identified distinct core structures. Explicit features including protein-ligand interactions were extracted from high-resolution cocrystal structures as 3D-based fingerprints. We found that a gradient boosting machine learning model with this explicit feature attribution can predict binding affinity with high accuracy. Finally, Shapley values were derived to explain local feature importance. We found specific van der Waals (vdW) interactions of key protein residues are pivotal for the predicted potency. Protein-specific and interpretable prediction models can guide the optimization of many small molecule drugs for improved potency.
    • Molecular Determinants of Epistasis in HIV-1 Protease: Elucidating the Interdependence of L89V and L90M Mutations in Resistance

      Henes, Mina; Kosovrasti, Klajdi; Lockbaum, Gordon J.; Leidner, Florian; Nachum, Gily S.; Nalivaika, Ellen A.; Bolon, Daniel N A; Yilmaz, Nese Kurt; Schiffer, Celia A.; Whitfield, Troy W. (2019-08-19)
      Protease inhibitors have the highest potency among antiviral therapies against HIV-1 infections, yet the virus can evolve resistance. Darunavir (DRV), currently the most potent Food and Drug Administration-approved protease inhibitor, retains potency against single-site mutations. However, complex combinations of mutations can confer resistance to DRV. While the interdependence between mutations within HIV-1 protease is key for inhibitor potency, the molecular mechanisms that underlie this control remain largely unknown. In this study, we investigated the interdependence between the L89V and L90M mutations and their effects on DRV binding. These two mutations have been reported to be positively correlated with one another in HIV-1 patient-derived protease isolates, with the presence of one mutation making the probability of the occurrence of the second mutation more likely. The focus of our investigation is a patient-derived isolate, with 24 mutations that we call "KY"; this variant includes the L89V and L90M mutations. Three additional KY variants with back-mutations, KY(V89L), KY(M90L), and the KY(V89L/M90L) double mutation, were used to experimentally assess the individual and combined effects of these mutations on DRV inhibition and substrate processing. The enzymatic assays revealed that the KY(V89L) variant, with methionine at residue 90, is highly resistant, but its catalytic function is compromised. When a leucine to valine mutation at residue 89 is present simultaneously with the L90M mutation, a rescue of catalytic efficiency is observed. Molecular dynamics simulations of these DRV-bound protease variants reveal how the L90M mutation induces structural changes throughout the enzyme that undermine the binding interactions.
    • Picomolar to Micromolar: Elucidating the Role of Distal Mutations in HIV-1 Protease in Conferring Drug Resistance

      Henes, Mina; Lockbaum, Gordon J.; Kosovrasti, Klajdi; Leidner, Florian; Nachum, Gily S.; Nalivaika, Ellen A.; Lee, Sook-Kyung; Spielvogel, Ean; Zhou, Shuntai; Swanstrom, Ronald; et al. (2019-08-13)
      Drug resistance continues to be a growing global problem. The efficacy of small molecule inhibitors is threatened by pools of genetic diversity in all systems, including antibacterials, antifungals, cancer therapeutics, and antivirals. Resistant variants often include combinations of active site mutations and distal "secondary" mutations, which are thought to compensate for losses in enzymatic activity. HIV-1 protease is the ideal model system to investigate these combinations and underlying molecular mechanisms of resistance. Darunavir (DRV) binds wild-type (WT) HIV-1 protease with a potency ofpM, but we have identified a protease variant that loses potency to DRV 150000-fold, with 11 mutations in and outside the active site. To elucidate the roles of these mutations in DRV resistance, we used a multidisciplinary approach, combining enzymatic assays, crystallography, and molecular dynamics simulations. Analysis of protease variants with 1, 2, 4, 8, 9, 10, and 11 mutations showed that the primary active site mutations caused approximately 50-fold loss in potency (2 mutations), while distal mutations outside the active site further decreased DRV potency from 13 nM (8 mutations) to 0.76 muM (11 mutations). Crystal structures and simulations revealed that distal mutations induce subtle changes that are dynamically propagated through the protease. Our results reveal that changes remote from the active site directly and dramatically impact the potency of the inhibitor. Moreover, we find interdependent effects of mutations in conferring high levels of resistance. These mechanisms of resistance are likely applicable to many other quickly evolving drug targets, and the insights may have implications for the design of more robust inhibitors.
    • Molecular and structural mechanism of pan-genotypic HCV NS3/4A protease inhibition by glecaprevir [preprint]

      Timm, Jennifer; Kosovrasti, Klajdi; Henes, Mina; Leidner, Florian; Hou, Shurong; Ali, Akbar; Yilmaz, Nese Kurt; Schiffer, Celia A. (2019-07-03)
      Hepatitis C virus (HCV), causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals (DAAs) had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes 1a, 3a, 4a and 5a in complex with GLE. Comparison with the highly similar grazoprevir (GZR) indicated the mechanism of GLE’s drastic improvement in potency. We found that while GLE is highly potent against wild type NS3/4A of all genotypes, specific resistance-associated substitutions (RASs) confer orders of magnitude loss in inhibition. Our crystal structures reveal molecular mechanisms behind pan-genotypic activity of GLE, including potency loss due to RASs at D168. Our structures permit for the first time analysis of changes due to polymorphisms among genotypes, providing insights into design principles that can aid future drug development and potentially can be extended to other proteins.
    • NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations

      Ishima, Rieko; Yilmaz, Nese Kurt; Schiffer, Celia A. (2019-07-01)
      Over the last two decades, both the sensitivity of NMR and the time scale of molecular dynamics (MD) simulation have increased tremendously and have advanced the field of protein dynamics. HIV-1 protease has been extensively studied using these two methods, and has presented a framework for cross-evaluation of structural ensembles and internal dynamics by integrating the two methods. Here, we review studies from our laboratories over the last several years, to understand the mechanistic basis of protease drug-resistance mutations and inhibitor responses, using NMR and crystal structure-based parallel MD simulations. Our studies demonstrate that NMR relaxation experiments, together with crystal structures and MD simulations, significantly contributed to the current understanding of structural/dynamic changes due to HIV-1 protease drug resistance mutations.
    • Constrained mutational sampling of amino acids in HIV-1 protease evolution

      Boucher, Jeffrey I.; Whitfield, Troy W.; Dauphin, Ann; Nachum, Gily S.; Hollins, Carl III; Zeldovich, Konstantin B.; Swanstrom, Ronald; Schiffer, Celia A.; Luban, Jeremy; Bolon, Daniel N A (2019-02-04)
      The evolution of HIV-1 protein sequences should be governed by a combination of factors including nucleotide mutational probabilities, the genetic code, and fitness. The impact of these factors on protein sequence evolution are interdependent, making it challenging to infer the individual contribution of each factor from phylogenetic analyses alone. We investigated the protein sequence evolution of HIV-1 by determining an experimental fitness landscape of all individual amino acid changes in protease. We compared our experimental results to the frequency of protease variants in a publicly available dataset of 32,163 sequenced isolates from drug-naive individuals. The most common amino acids in sequenced isolates supported robust experimental fitness, indicating that the experimental fitness landscape captured key features of selection acting on protease during viral infections of hosts. Amino acid changes requiring multiple mutations from the likely ancestor were slightly less likely to support robust experimental fitness than single mutations, consistent with the genetic code favoring chemically conservative amino acid changes. Amino acids that were common in sequenced isolates were predominantly accessible by single mutations from the likely protease ancestor. Multiple mutations commonly observed in isolates were accessible by mutational walks with highly fit single mutation intermediates. Our results indicate that the prevalence of multiple base mutations in HIV-1 protease is strongly influenced by mutational sampling.