Now showing items 1-20 of 174

    • Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition

      Peterson, Nicholas D.; Icso, Janneke D.; Salisbury, J. Elizabeth; Thompson, Paul R.; Pukkila-Worley, Read (2022-01-31)
      Intracellular signaling regulators can be concentrated into membrane-free, higher ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD(+) glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD(+) glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD(+) glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD(+) glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD(+) glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.
    • The role of SERPIN citrullination in thrombosis

      Tilvawala, Ronak; Nemmara, Venkatesh V.; Reyes, Archie C.; Sorvillo, Nicoletta; Salinger, Ari J.; Cherpokova, Deya; Fukui, Saeko; Gutch, Sarah; Wagner, Denisa; Thompson, Paul R. (2021-12-16)
      Aberrant protein citrullination is associated with many pathologies; however, the specific effects of this modification remain unknown. We have previously demonstrated that serine protease inhibitors (SERPINs) are highly citrullinated in rheumatoid arthritis (RA) patients. These citrullinated SERPINs include antithrombin, antiplasmin, and t-PAI, which regulate the coagulation and fibrinolysis cascades. Notably, citrullination eliminates their inhibitory activity. Here, we demonstrate that citrullination of antithrombin and t-PAI impairs their binding to their cognate proteases. By contrast, citrullination converts antiplasmin into a substrate. We recapitulate the effects of SERPIN citrullination using in vitro plasma clotting and fibrinolysis assays. Moreover, we show that citrullinated antithrombin and antiplasmin are increased and decreased in a deep vein thrombosis (DVT) model, accounting for how SERPIN citrullination shifts the equilibrium toward thrombus formation. These data provide a direct link between increased citrullination and the risk of thrombosis in autoimmunity and indicate that aberrant SERPIN citrullination promotes pathological thrombus formation.
    • Proximity-Dependent Labeling of Cysteines

      Sen, Sudeshna; Sultana, Nadia; Shaffer, Scott A.; Thompson, Paul R. (2021-11-24)
      Mapping protein-protein interactions is crucial for understanding various signaling pathways in living cells, and developing new techniques for this purpose has attracted significant interest. Classic methods (e.g., the yeast two-hybrid) have been supplanted by more sophisticated chemical approaches that label proximal proteins (e.g., BioID, APEX). Herein we describe a proximity-based approach that uniquely labels cysteines. Our approach exploits the nicotinamide N-methyltransferase (NNMT)-catalyzed methylation of an alkyne-substituted 4-chloropyridine (SS6). Upon methylation of the pyridinium nitrogen, this latent electrophile diffuses out of the active site and labels proximal proteins on short time scales ( < /=5 min). We validated this approach by identifying known (and novel) interacting partners of protein arginine deiminase 2 (PAD2) and pyruvate dehydrogenase kinase 1 (PDK1). To our knowledge, this technology uniquely exploits a suicide substrate to label proximal cysteines in live cells.
    • Applicability of Small-Molecule Inhibitors in the Study of Peptidyl Arginine Deiminase 2 (PAD2) and PAD4

      Martin Monreal, Maria Teresa.; Rebak, Alexandra Stripp; Massarenti, Laura; Mondal, Santanu; Senolt, Ladislav; Odum, Niels; Nielsen, Michael L.; Thompson, Paul R.; Nielsen, Claus H.; Damgaard, Dres (2021-10-19)
      Citrullination, the conversion of peptidyl-arginine into peptidyl-citrulline, is involved in the breakage of self-tolerance in anti-CCP-positive rheumatoid arthritis. This reaction is catalyzed by peptidyl arginine deiminases (PADs), of which PAD2 and PAD4 are thought to play key pathogenic roles. Small-molecule PAD inhibitors such as the pan-PAD inhibitor BB-Cl-amidine, the PAD2-specific inhibitor AFM-30a, and the PAD4-specific inhibitor GSK199 hold therapeutic potential and are useful tools in studies of citrullination. Using an ELISA based on the citrullination of fibrinogen, we found that AFM-30a inhibited the catalytic activity of PADs derived from live PMNs or lysed PBMCs and PMNs and of PADs in cell-free synovial fluid samples from RA patients, while GSK199 had minor effects. In combination, AFM-30a and GSK199 inhibited total intracellular citrullination and citrullination of histone H3 in PBMCs, as determined by Western blotting. They were essentially nontoxic to CD4(+) T cells, CD8(+) T cells, B cells, NK cells, and monocytes at concentrations ranging from 1 to 20 muM, while BB-Cl-amidine was cytotoxic at concentrations above 1 muM, as assessed by flow cytometric viability staining and by measurement of lactate dehydrogenase released from dying cells. In conclusion, AFM-30a is an efficient inhibitor of PAD2 derived from PBMCs, PMNs, or synovial fluid. AFM-30a and GSK199 can be used in combination for inhibition of PAD activity associated with PBMCs but without the cytotoxic effect of BB-Cl-amidine. This suggests that AFM-30a and GSK199 may have fewer off-target effects than BB-Cl-amidine and therefore hold greater therapeutic potential.
    • Pan-3C Protease Inhibitor Rupintrivir Binds SARS-CoV-2 Main Protease in a Unique Binding Mode

      Lockbaum, Gordon J.; Henes, Mina; Lee, Jeong Min.; Timm, Jennifer; Nalivaika, Ellen A.; Thompson, Paul R.; Yilmaz, Nese Kurt; Schiffer, Celia A. (2021-10-05)
      Rupintrivir targets the 3C cysteine proteases of the picornaviridae family, which includes rhinoviruses and enteroviruses that cause a range of human diseases. Despite being a pan-3C protease inhibitor, rupintrivir activity is extremely weak against the homologous 3C-like protease of SARS-CoV-2. In this study, the crystal structures of rupintrivir were determined bound to enterovirus 68 (EV68) 3C protease and the 3C-like main protease (M(pro)) from SARS-CoV-2. While the EV68 3C protease-rupintrivir structure was similar to previously determined complexes with other picornavirus 3C proteases, rupintrivir bound in a unique conformation to the active site of SARS-CoV-2 M(pro) splitting the catalytic cysteine and histidine residues. This bifurcation of the catalytic dyad may provide a novel approach for inhibiting cysteine proteases.
    • A Streamlined Data Analysis Pipeline for the Identification of Sites of Citrullination

      Maurais, Aaron J.; Salinger, Ari J.; Tobin, Micaela; Shaffer, Scott A.; Weerapana, Eranthie; Thompson, Paul R. (2021-09-28)
      Citrullination is an enzyme-catalyzed post-translational modification (PTM) that is essential for a host of biological processes, including gene regulation, programmed cell death, and organ development. While this PTM is required for normal cellular functions, aberrant citrullination is a hallmark of autoimmune disorders as well as cancer. Although aberrant citrullination is linked to human pathology, the exact role of citrullination in disease remains poorly characterized, in part because of the challenges associated with identifying the specific arginine residues that are citrullinated. Tandem mass spectrometry is the most precise method for uncovering sites of citrullination; however, due to the small mass shift (+0.984 Da) that results from citrullination, current database search algorithms commonly misannotate spectra, leading to a high number of false-positive assignments. To address this challenge, we developed an automated workflow to rigorously and rapidly mine proteomic data to unambiguously identify the sites of citrullination from complex peptide mixtures. The crux of this streamlined workflow is the ionFinder software program, which classifies citrullination sites with high confidence on the basis of the presence of diagnostic fragment ions. These diagnostic ions include the neutral loss of isocyanic acid, which is a dissociative event that is unique to citrulline residues. Using the ionFinder program, we have mapped the sites of autocitrullination on purified protein arginine deiminases (PAD1-4) and mapped the global citrullinome in a PAD2-overexpressing cell line. The ionFinder algorithm is a highly versatile, user-friendly, and open-source program that is agnostic to the type of instrument and mode of fragmentation that are used.
    • PAD2-mediated citrullination of Fibulin-5 promotes elastogenesis

      Sun, Bo; Tomita, Beverly; Salinger, Ari J.; Tilvawala, Ronak; Li, Ling; Hakami, Hana; Liu, Tao; Tsoyi, Konstantin; Rosas, Ivan O.; Reinhardt, Dieter P.; et al. (2021-08-01)
      The formation of elastic fibers is active only in the perinatal period. How elastogenesis is developmentally regulated is not fully understood. Citrullination is a unique form of post-translational modification catalyzed by peptidylarginine deiminases (PADs), including PAD1-4. Its physiological role is largely unknown. By using an unbiased proteomic approach of lung tissues, we discovered that FBLN5 and LTBP4, two key elastogenic proteins, were temporally modified in mouse and human lungs. We further demonstrated that PAD2 citrullinated FBLN5 preferentially in young lungs compared to adult lungs. Genetic ablation of PAD2 resulted in attenuated elastogenesis in vitro and age-dependent emphysema in vivo. Mechanistically, citrullination protected FBLN5 from proteolysis and subsequent inactivation of its elastogenic activity. Furthermore, citrullinated but not native FBLN5 partially rescued in vitro elastogenesis in the absence of PAD activity. Our data uncover a novel function of citrullination, namely promoting elastogenesis, and provide additional insights to how elastogenesis is regulated.
    • Progesterone stimulates histone citrullination to increase IGFBP1 expression in uterine cells

      Young, Coleman H.; Snow, Bryce; DeVore, Stanley B.; Mohandass, Adithya; Nemmara, Venkatesh V.; Thompson, Paul R.; Thyagarajan, Baskaran; Navratil, Amy M.; Cherrington, Brian D. (2021-07-08)
      Peptidylarginine deiminases (PAD) enzymes were initially characterized in uteri, but since then little research has examined their function in this tissue. PADs post-translationally convert arginine residues in target proteins to citrulline and are highly expressed in ovine caruncle epithelia and ovine uterine luminal epithelial (OLE)-derived cell line. Progesterone (P4) not only maintains the uterine epithelia but also regulates the expression of endometrial genes that code for proteins that comprise the histotroph and are critical during early pregnancy. Given this, we tested whether P4 stimulates PAD-catalyzed histone citrullination to epigenetically regulate expression of the histotroph gene insulin-like growth factor binding protein 1 (IGFBP1) in OLE cells. 100 nM P4 significantly increases IGFBP1 mRNA expression; however, this increase is attenuated by pre-treating OLE cells with 100 nM progesterone receptor antagonist RU486 or 2 microM of a pan-PAD inhibitor. P4 treatment of OLE cells also stimulates citrullination of histone H3 arginine residues 2, 8, and 17 leading to enrichment of the ovine IGFBP1 gene promoter. Since PAD2 nuclear translocation and catalytic activity require calcium, we next investigated whether P4 triggers calcium influx in OLE cells. OLE cells were pre-treated with 10 nM nicardipine, an L-type calcium channel blocker, followed by stimulation with P4. Using fura2-AM imaging, we found that P4 initiates a rapid calcium influx through L-type calcium channels in OLE cells. Furthermore, this influx is necessary for PAD2 nuclear translocation and resulting citrullination of histone H3 arginine residues 2, 8, and 17. Our work suggests that P4 stimulates rapid calcium influx through L-type calcium channels initiating PAD-catalyzed histone citrullination and an increase in IGFBP1 expression.
    • A phase transition enhances the catalytic activity of SARM1, an NAD(+) glycohydrolase involved in neurodegeneration

      Loring, Heather S.; Czech, Victoria L.; Icso, Janneke D.; O'Connor, Lauren C.; Parelkar, Sangram; Byrne, Alexandra B.; Thompson, Paul R. (2021-06-29)
      Sterile alpha and toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) is a neuronally expressed NAD(+) glycohydrolase whose activity is increased in response to stress. NAD(+) depletion triggers axonal degeneration, which is a characteristic feature of neurological diseases. Notably, loss of SARM1 is protective in murine models of peripheral neuropathy and traumatic brain injury. Herein, we report that citrate induces a phase transition that enhances SARM1 activity by ~2000-fold. This phase transition can be disrupted by mutating a residue involved in multimerization, G601P. This mutation also disrupts puncta formation in cells. We further show that citrate induces axonal degeneration in C. elegans that is dependent on the C. elegans orthologue of SARM1 (TIR-1). Notably, citrate induces the formation of larger puncta indicating that TIR-1/SARM1 multimerization is essential for degeneration in vivo. These findings provide critical insights into SARM1 biology with important implications for the discovery of novel SARM1-targeted therapeutics.
    • Human cytomegalovirus-induced host protein citrullination is crucial for viral replication

      Griffante, Gloria; Salinger, Ari J.; Mondal, Santanu; Thompson, Paul R.; De Andrea, Marco; Landolfo, Santo (2021-06-23)
      Citrullination is the conversion of arginine-to-citrulline by protein arginine deiminases (PADs), whose dysregulation is implicated in the pathogenesis of various types of cancers and autoimmune diseases. Consistent with the ability of human cytomegalovirus (HCMV) to induce post-translational modifications of cellular proteins to gain a survival advantage, we show that HCMV infection of primary human fibroblasts triggers PAD-mediated citrullination of several host proteins, and that this activity promotes viral fitness. Citrullinome analysis reveals significant changes in deimination levels of both cellular and viral proteins, with interferon (IFN)-inducible protein IFIT1 being among the most heavily deiminated one. As genetic depletion of IFIT1 strongly enhances HCMV growth, and in vitro IFIT1 citrullination impairs its ability to bind to 5'-ppp-RNA, we propose that viral-induced IFIT1 citrullination is a mechanism of HCMV evasion from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection.
    • Structures of human peptidylarginine deiminase type III provide insights into substrate recognition and inhibitor design

      Funabashi, Kazumasa; Sawata, Mizuki; Nagai, Anna; Akimoto, Megumi; Mashimo, Ryutaro; Takahara, Hidenari; Kizawa, Kenji; Thompson, Paul R.; Ite, Kenji; Kitanishi, Kenichi; et al. (2021-05-07)
      Peptidylarginine deiminase type III (PAD3) is an isozyme belonging to the PAD enzyme family that converts arginine to citrulline residue(s) within proteins. PAD3 is expressed in most differentiated keratinocytes of the epidermis and hair follicles, while S100A3, trichohyalin, and filaggrin are its principal substrates. In this study, the X-ray crystal structures of PAD3 in six states, including its complex with the PAD inhibitor Cl-amidine, were determined. This structural analysis identified a large space around Gly374 in the PAD3-Ca(2+)-Cl-amidine complex, which may be used to develop novel PAD3-selective inhibitors. In addition, similarities between PAD3 and PAD4 were found based on the investigation of PAD4 reactivity with S100A3 in vitro. A comparison of the structures of PAD1, PAD2, PAD3, and PAD4 implied that the flexibility of the structures around the active site may lead to different substrate selectivity among these PAD isozymes.
    • Citrullinated vimentin mediates development and progression of lung fibrosis

      Li, Fu Jun; Mondal, Santanu; Thompson, Paul R.; Antony, Veena B. (2021-03-17)
      The mechanisms by which environmental exposures contribute to the pathogenesis of lung fibrosis are unclear. Here, we demonstrate an increase in cadmium (Cd) and carbon black (CB), common components of cigarette smoke (CS) and environmental particulate matter (PM), in lung tissue from subjects with idiopathic pulmonary fibrosis (IPF). Cd concentrations were directly proportional to citrullinated vimentin (Cit-Vim) amounts in lung tissue of subjects with IPF. Cit-Vim amounts were higher in subjects with IPF, especially smokers, which correlated with lung function and were associated with disease manifestations. Cd/CB induced the secretion of Cit-Vim in an Akt1- and peptidylarginine deiminase 2 (PAD2)-dependent manner. Cit-Vim mediated fibroblast invasion in a 3D ex vivo model of human pulmospheres that resulted in higher expression of CD26, collagen, and alpha-SMA. Cit-Vim activated NF-kappaB in a TLR4-dependent fashion and induced the production of active TGF-beta1, CTGF, and IL-8 along with higher surface expression of TLR4 in lung fibroblasts. To corroborate ex vivo findings, mice treated with Cit-Vim, but not Vim, independently developed a similar pattern of fibrotic tissue remodeling, which was TLR4 dependent. Moreover, wild-type mice, but not PAD2(-/-) and TLR4 mutant (MUT) mice, exposed to Cd/CB generated high amounts of Cit-Vim, in both plasma and bronchoalveolar lavage fluid, and developed lung fibrosis in a stereotypic manner. Together, these studies support a role for Cit-Vim as a damage-associated molecular pattern molecule (DAMP) that is generated by lung macrophages in response to environmental Cd/CB exposure. Furthermore, PAD2 might represent a promising target to attenuate Cd/CB-induced fibrosis.
    • Chemical biology of protein citrullination by the protein A arginine deiminases

      Mondal, Santanu; Thompson, Paul R. (2021-03-03)
      Citrullination is a post-translational modification (PTM) that converts peptidyl-arginine into peptidyl-citrulline; citrullination is catalyzed by the protein arginine deiminases (PADs). This PTM is associated with several physiological processes, including the epigenetic regulation of gene expression, neutrophil extracellular trap formation, and DNA-damage induced apoptosis. Notably, aberrant protein citrullination is relevant to several autoimmune and neurodegenerative diseases and certain forms of cancer. As such, the PADs are promising therapeutic targets. In this review, we discuss recent advances in the development of PAD inhibitors and activity-based probes, the development and use of citrulline-specific probes in chemoproteomic applications, and methods to site-specifically incorporate citrulline into proteins.
    • Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188

      Lockbaum, Gordon J.; Reyes, Archie C.; Lee, Jeong Min; Tilvawala, Ronak; Nalivaika, Ellen A.; Ali, Akbar; Yilmaz, Nese Kurt; Thompson, Paul R.; Schiffer, Celia A. (2021-01-25)
      Viral proteases are critical enzymes for the maturation of many human pathogenic viruses and thus are key targets for direct acting antivirals (DAAs). The current viral pandemic caused by SARS-CoV-2 is in dire need of DAAs. The Main protease (M(pro)) is the focus of extensive structure-based drug design efforts which are mostly covalent inhibitors targeting the catalytic cysteine. ML188 is a non-covalent inhibitor designed to target SARS-CoV-1 M(pro), and provides an initial scaffold for the creation of effective pan-coronavirus inhibitors. In the current study, we found that ML188 inhibits SARS-CoV-2 M(pro) at 2.5 microM, which is more potent than against SAR-CoV-1 M(pro). We determined the crystal structure of ML188 in complex with SARS-CoV-2 M(pro) to 2.39 A resolution. Sharing 96% sequence identity, structural comparison of the two complexes only shows subtle differences. Non-covalent protease inhibitors complement the design of covalent inhibitors against SARS-CoV-2 main protease and are critical initial steps in the design of DAAs to treat CoVID 19.
    • Site-specific incorporation of citrulline into proteins in mammalian cells

      Mondal, Santanu; Wang, Shu; Zheng, Yunan; Sen, Sudeshna; Chatterjee, Abhishek; Thompson, Paul R. (2021-01-04)
      Citrullination is a post-translational modification (PTM) of arginine that is crucial for several physiological processes, including gene regulation and neutrophil extracellular trap formation. Despite recent advances, studies of protein citrullination remain challenging due to the difficulty of accessing proteins homogeneously citrullinated at a specific site. Herein, we report a technology that enables the site-specific incorporation of citrulline (Cit) into proteins in mammalian cells. This approach exploits an engineered E. coli-derived leucyl tRNA synthetase-tRNA pair that incorporates a photocaged-citrulline (SM60) into proteins in response to a nonsense codon. Subsequently, SM60 is readily converted to Cit with light in vitro and in living cells. To demonstrate the utility of the method, we biochemically characterize the effect of incorporating Cit at two known autocitrullination sites in Protein Arginine Deiminase 4 (PAD4, R372 and R374) and show that the R372Cit and R374Cit mutants are 181- and 9-fold less active than the wild-type enzyme. This technology possesses the potential to decipher the biology of citrullination.
    • Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice

      Sodré, Fernanda M. C.; Bissenova, Samal; Bruggeman, Ylke; Tilvawala, Ronak; Cook, Dana P.; Berthault, Claire; Mondal, Santanu; Callebaut, Aïsha; You, Sylvaine; Scharfmann, Raphael; et al. (2020-11-17)
      Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated GRP78 and reduced spontaneous NETosis of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate, characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of IFNγ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.
    • PAD2 Dysregulation and Abnormal Protein Citrullination in ALS Disease Models

      Yusuf, Issa; Qiao, Tao; Tilvawala, Ronak; Thompson, Paul R.; Xu, Zuoshang (2020-10-26)
      Amyotrophic lateral sclerosis (ALS) is a deadly neurodegenerative disease characterized by loss of motor neurons, paralysis and eventual death. The mechanism of ALS is still incompletely understood, and the disease is to date without an effective remedy. Protein arginine deiminase 2 (PAD2) converts peptidyl-Arginine into peptidyl-Citrulline, a post-translational modification referred to as citrullination. Aberrant expression of PAD2 and protein citrullination are increased in several neurodegenerative conditions. Whether this increase is involved in ALS is unknown. In this study, we investigated PAD2 and protein citrullination in two genetic mouse models of ALS expressing human mutant SOD1G93A and PFN1C71G, respectively, and in post-mortem human ALS spinal cord. We show that the expression of PAD2 mRNA and protein expressions are increased progressively along with the ALS progression. Additionally, protein citrullination is increase following the same trend. These changes occur in areas with the most severe motor neuron degeneration including the spinal cord, and brainstem. We show that the increase in PAD2 and citrullinated proteins occur specifically in astrocytes coinciding with the development of reactive astrogliosis. Finally, we show that citrullinated proteins form non-astrocyte aggregate patterns; and are dominantly expressed in insoluble protein fractions. These results demonstrate that PAD2 dysregulation and increased protein citrullination are key characteristics of reactive astrogliosis, and possibly drive some type of protein aggregation in the pathogenesis of ALS. Because protein citrullination alters protein functions, our results suggest that PAD2 and protein citrullination play a role in astrogliosis and astrocytic toxicity in ALS and other neurodegenerative conditions.
    • Peptidylarginine deiminase 2 has potential as both a biomarker and therapeutic target of sepsis

      Tian, Yuzi; Mondal, Santanu; Thompson, Paul R.; Li, Yongqing (2020-10-15)
      Peptidylarginine deiminases (PADs) are a family of calcium-dependent enzymes that are involved in a variety of human disorders, including cancer and autoimmune diseases. Although targeting PAD4 has shown no benefit in sepsis, the role of PAD2 remains unknown. Here, we report that PAD2 is engaged in sepsis and sepsis-induced acute lung injury in both human patients and mice. Pad2-/- or selective inhibition of PAD2 by a small molecule inhibitor increased survival and improved overall outcomes in mouse models of sepsis. Pad2 deficiency decreased neutrophil extracellular trap (NET) formation. Importantly, Pad2 deficiency inhibited Caspase-11-dependent pyroptosis in vivo and in vitro. Suppression of PAD2 expression reduced inflammation and increased macrophage bactericidal activity. In contrast to Pad2-/-, Pad4 deficiency enhanced activation of Caspase-11-dependent pyroptosis in BM-derived macrophages and displayed no survival improvement in a mouse sepsis model. Collectively, our findings highlight the potential of PAD2 as an indicative marker and therapeutic target for sepsis.
    • Succination inactivates gasdermin D and blocks pyroptosis

      Humphries, Fiachra; Shmuel-Galia, Liraz; Ketelut-Carneiro, Natalia; Wilson, Ruth; Jiang, Zhaozhao; Khalighinejad, Farnaz; Muneeruddin, Khaja; Shaffer, Scott A.; Ionete, Carolina; Thompson, Paul R.; et al. (2020-09-25)
      Activated macrophages undergo a metabolic switch to aerobic glycolysis accumulating Krebs cycle intermediates that alter transcription of immune response genes. Here we extend these observations by defining fumarate as an inhibitor of pyroptotic cell death. We found that dimethyl fumarate (DMF) delivered to cells or endogenous fumarate reacts with gasdermin D (GSDMD) at critical cysteine residues to form S-(2-succinyl)-cysteine. GSDMD succination prevents its interaction with caspases, limiting its processing, oligomerization, and capacity to induce cell death. In mice, the administration of DMF protects against LPS shock and alleviates familial Mediterranean fever and experimental autoimmune encephalitis (EAE) by targeting GSDMD. Collectively, these findings identify GSDMD as a target of fumarate and reveal a mechanism of action for fumarate-based therapeutics including DMF used to treat multiple sclerosis.
    • Identification of the first noncompetitive SARM1 inhibitors

      Loring, Heather S.; Parelkar, Sangram; Mondal, Santanu; Thompson, Paul R. (2020-09-15)
      Sterile Alpha and Toll Interleukin Receptor Motif-containing protein 1 (SARM1) is a key therapeutic target for diseases that exhibit Wallerian-like degeneration; Wallerian degeneration is characterized by degeneration of the axon distal to the site of injury. These diseases include traumatic brain injury, peripheral neuropathy, and neurodegenerative diseases. SARM1 promotes neurodegeneration by catalyzing the hydrolysis of NAD(+) to form a mixture of ADPR and cADPR. Notably, SARM1 knockdown prevents degeneration, indicating that SARM1 inhibitors will likely be efficacious in treating these diseases. Consistent with this hypothesis is the observation that NAD(+) supplementation is axoprotective. To identify compounds that block the NAD(+) hydrolase activity of SARM1, we developed and performed a high-throughput screen (HTS). This HTS assay exploits an NAD(+) analog, etheno-NAD(+) (ENAD) that fluoresces upon cleavage of the nicotinamide moiety. From this screen, we identified berberine chloride and zinc chloride as the first noncompetitive inhibitors of SARM1. Though modest in potency, the noncompetitive mode of inhibition, suggests the presence of an allosteric binding pocket on SARM1 that can be targeted for future therapeutic development. Additionally, zinc inhibition and site-directed mutagenesis reveals that cysteines 629 and 635 are critical for SARM1 catalysis, highlighting these sites for the design of inhibitors targeting SARM1.