ABOUT THIS COMMUNITY

Founded in 2001, the Department of Neurobiology at UMass Chan Medical School has evolved into a unique and integrated hub of investigators addressing fundamental problems in neurobiology, from single molecules to behavior, primarily using invertebrate model organisms. Combining cell biological, physiological and behavioral analyses with a critical interventionist angle afforded by cutting-edge genetic approaches, the Department aims to understand the complexity of brain development and function. Use the “UMass Chan Affiliation” Filter by Category in the left sidebar to see the publications produced by a specific lab.

Read more about the Neurobiology collections

Collections in this community

Recently Published

  • BNST GluN2D-containing NMDARs contribute to ethanol intake but not negative affective behaviors in female mice [preprint]

    Doyle, Marie A; Salimando, Gregory J; Altemus, Megan E; Badt, Justin K; Bedenbaugh, Michelle N; Vardy, Alexander S; Adank, Danielle N; Park, Anika S; Winder, Danny G (2024-04-21)
    Alcohol use disorder (AUD) is a chronic, relapsing disease, highly comorbid with anxiety and depression. The bed nucleus of the stria terminalis (BNST), and Crh + neurons in this region are thought to play a key role in chronic ethanol-induced increases in volitional ethanol intake. This role has been hypothesized to be driven by emergent BNST-dependent negative affective behaviors. Indeed, we report here that in female mice undergoing a home cage chronic drinking forced abstinence model (CDFA), excitatory transmission undergoes time-dependent upregulation in BNST Crh + cells. Excitatory NMDA receptors (NMDARs) are a major target of ethanol, and chronic ethanol exposure has been shown to regulate NMDAR function and expression. GluN2D subunit-containing NMDARs have emerged as a target of interest due to their limited distribution and potential roles in affective behavior. We find that knockdown of dorsal BNST (dBNST) GluN2D expression significantly decreases ethanol intake in female, but not male, mice. While BNST Grin2b expression was significantly increased in protracted abstinence following CDFA, no differences in Grin2d expression were observed in dBNST or specifically in dBNST Crh + neurons. Finally, to determine the impact of GluN2D expression on negative affective behaviors, open field, elevated zero maze, and forced swim tasks were used to measure anxiety- and depressive-like behaviors in constitutive and conditional BNST GluN2D knockout mice. Surprisingly, we find that deletion of GluN2D fails to alter negative affect in ethanol-naïve female mice. Together, these data suggest a role for BNST GluN2D-containing NMDARs in ethanol drinking behaviors but not abstinence from ethanol, highlighting potential sex differences and behavioral specificity in the context of AUD behaviors. Overall, these data further suggest roles for BNST synaptic signaling in volitional ethanol intake that are partially independent of actions on affective behavior.
  • Microglia phagocytic mechanisms: Development informing disease

    Beiter, Rebecca M; Sheehan, Patrick W; Schafer, Dorothy P (2024-04-16)
    Microglia are tissue-resident macrophages and professional phagocytes of the central nervous system (CNS). In development, microglia-mediated phagocytosis is important for sculpting the cellular architecture. This includes the engulfment of dead/dying cells, pruning extranumerary synapses and axons, and phagocytosing fragments of myelin sheaths. Intriguingly, these developmental phagocytic mechanisms by which microglia sculpt the CNS are now appreciated as important for eliminating synapses, myelin, and proteins during neurodegeneration. Here, we discuss parallels between neurodevelopment and neurodegeneration, which highlights how development is informing disease. We further discuss recent advances and challenges towards therapeutically targeting these phagocytic pathways and how we can leverage development to overcome these challenges.
  • Eviatar Yemini

    Yemini, Eviatar (2024-04-08)
    Interview with Eviatar Yemini, who studies how neurobehavioral circuits grow and evolve to meet the needs at different stages of development at UMass Chan Medical School.
  • Dopamine control of social novelty preference is constrained by an interpeduncular-tegmentum circuit

    Molas, Susanna; Freels, Timothy G; Zhao-Shea, Rubing; Lee, Timothy; Gimenez-Gomez, Pablo; Barbini, Melanie; Martin, Gilles E; Tapper, Andrew R (2024-04-03)
    Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.
  • Synaptic injury in the inner plexiform layer of the retina is associated with progression in multiple sclerosis

    Cordano, Christian; Werneburg, Sebastian; Abdelhak, Ahmed; Bennett, Daniel J; Beaudry-Richard, Alexandra; Duncan, Greg J; Oertel, Frederike C; Boscardin, W John; Yiu, Hao H; Jabassini, Nora; et al. (2024-04-03)
    While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.
  • Combinatorial expression of neurexin genes regulates glomerular targeting by olfactory sensory neurons [preprint]

    Park, Sung Jin; Wang, I-Hao; Lee, Namgyu; Jiang, Hao-Ching; Uemura, Takeshi; Futai, Kensuke; Kim, Dohoon; Macosko, Evan; Greer, Paul (2024-04-02)
    Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.
  • Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia

    Funes, Salome; Jung, Jonathan; Gadd, Del Hayden; Mosqueda, Michelle; Zhong, Jianjun; Shankaracharya; Unger, Matthew; Stallworth, Karly; Cameron, Debra; Rotunno, Melissa S; et al. (2024-03-20)
    Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.
  • The Sleepy Shrimp Is Caught by the Tide: Parhyale hawaiensis As a New Model Organism for Circatidal Rhythms

    Kwiatkowski, Erica R (2024-03-15)
    Biological rhythms allow organisms to time their physiologies to match environmental cycles. Circatidal rhythms are synchronized by tidal cycles along coastlines, and have a period of 12.4 or 24.8 hours (h). Little is known about their underlying molecular mechanisms, despite how essential they are for many marine species. We chose to utilize the crustacean Parhyale hawaiensis as they are amenable to genetic manipulation. I demonstrate that Parhyale exhibits robust circatidal rhythms of activity entrained by our artificial tidal regimen. These circatidal rhythms differ from those entrained by a 12h:12h light:dark cycle, in pattern and periodicity. To investigate if the circadian molecular clock is required for circatidal rhythms, we used CRISPR-Cas9 and generated a line of Parhyale carrying a null allele of the core circadian clock gene Bmal1. I show individuals lacking Bmal1 exhibit defects both in circadian behavior, as expected, but also in circatidal behavior, labeling Bmal1 the first circatidal clock gene. I then address how circatidal rhythms adapt to the three types of tidal cycle occurring on Earth, characterized by differing periodicities. I show that Parhyale can entrain to artificial regimens mimicking all types of tidal cycle, but as regimens got further from 12.4h in period, animals exhibited behavioral flexibility. Under these challenging tidal cycles, some animals exhibited 12.4h circatidal-like rhythms of behavior, while other had more 24h circadian-like patterns of activity, demonstrating that the interaction between circadian and circatidal cycles is quite complex. In summary, this work introduces Parhyale hawaiensis as a robust model organism to study circatidal rhythms.
  • Learning dynamic representations of the functional connectome in neurobiological networks [preprint]

    Dyballa, Luciano; Lang, Samuel; Haslund-Gourley, Alexandra; Yemini, Eviatar; Zucker, Steven W (2024-02-27)
    The static synaptic connectivity of neuronal circuits stands in direct contrast to the dynamics of their function. As in changing community interactions, different neurons can participate actively in various combinations to effect behaviors at different times. We introduce an unsupervised approach to learn the dynamic affinities between neurons in live, behaving animals, and to reveal which communities form among neurons at different times. The inference occurs in two major steps. First, pairwise non-linear affinities between neuronal traces from brain-wide calcium activity are organized by non-negative tensor factorization (NTF). Each factor specifies which groups of neurons are most likely interacting for an inferred interval in time, and for which animals. Finally, a generative model that allows for weighted community detection is applied to the functional motifs produced by NTF to reveal a dynamic functional connectome. Since time codes the different experimental variables (e.g., application of chemical stimuli), this provides an atlas of neural motifs active during separate stages of an experiment (e.g., stimulus application or spontaneous behaviors). Results from our analysis are experimentally validated, confirming that our method is able to robustly predict causal interactions between neurons to generate behavior.
  • Silencing Parkinson's risk allele Rit2 sex-specifically compromises motor function and dopamine neuron viability

    Kearney, Patrick J; Zhang, Yuanxi; Liang, Marianna; Tan, Yanglan; Kahuno, Elizabeth; Conklin, Tucker L; Fagan, Rita R; Pavchinskiy, Rebecca G; Shaffer, Scott A; Yue, Zhenyu; et al. (2024-02-23)
    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and arises from dopamine (DA) neuron death selectively in the substantia nigra pars compacta (SNc). Rit2 is a reported PD risk allele, and recent single cell transcriptomic studies identified a major RIT2 cluster in PD DA neurons, potentially linking Rit2 expression loss to a PD patient cohort. However, it is still unknown whether Rit2 loss itself impacts DA neuron function and/or viability. Here we report that conditional Rit2 silencing in mouse DA neurons drove motor dysfunction that occurred earlier in males than females and was rescued at early stages by either inhibiting the DA transporter (DAT) or with L-DOPA treatment. Motor dysfunction was accompanied by decreased DA release, striatal DA content, phenotypic DAergic markers, DA neurons, and DAergic terminals, with increased pSer129-alpha synuclein and pSer935-LRRK2 expression. These results provide clear evidence that Rit2 loss is causal for SNc cell death and motor dysfunction, and reveal key sex-specific differences in the response to Rit2 loss.
  • The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward

    Ono, Daisuke; Weaver, David R.; Hastings, Michael H; Honma, Ken-Ichi; Honma, Sato; Silver, Rae (2024-02-16)
    It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
  • Microglia-astrocyte crosstalk regulates synapse remodeling via Wnt signaling [preprint]

    Faust, Travis E; Lee, Yi-Han; O'Connor, Ciara; Boyle, Margaret A; Gunner, Georgia; Badimon, Ana; Ayata, Pinar; Schaefer, Anne; Schafer, Dorothy P (2024-02-09)
    Astrocytes and microglia are emerging key regulators of activity-dependent synapse remodeling that engulf and remove synapses in response to changes in neural activity. Yet, the degree to which these cells communicate to coordinate this process remains an open question. Here, we use whisker removal in postnatal mice to induce activity-dependent synapse removal in the barrel cortex. We show that astrocytes do not engulf synapses in this paradigm. Instead, astrocytes reduce their contact with synapses prior to microglia-mediated synapse engulfment. We further show that reduced astrocyte-contact with synapses is dependent on microglial CX3CL1-CX3CR1 signaling and release of Wnts from microglia following whisker removal. These results demonstrate an activity-dependent mechanism by which microglia instruct astrocyte-synapse interactions, which then provides a permissive environment for microglia to remove synapses. We further show that this mechanism is critical to remodel synapses in a changing sensory environment and this signaling is upregulated in several disease contexts.
  • Clocks at sea: the genome-editing tide is rising

    Kwiatkowski, Erica R; Rosenthal, Joshua J C; Emery, Patrick (2024-02-08)
    The coastline is a particularly challenging environment for its inhabitants. Not only do they have to cope with the solar day and the passing of seasons, but they must also deal with tides. In addition, many marine species track the phase of the moon, especially to coordinate reproduction. Marine animals show remarkable behavioral and physiological adaptability, using biological clocks to anticipate specific environmental cycles. Presently, we lack a basic understanding of the molecular mechanisms underlying circatidal and circalunar clocks. Recent advances in genome engineering and the development of genetically tractable marine model organisms are transforming how we study these timekeeping mechanisms and opening a novel era in marine chronobiology.
  • Microglia: Activity-dependent regulators of neural circuits

    Durán Laforet, Violeta; Schafer, Dorothy P (2024-01-31)
    It has been more than a century since Pío del Río-Hortega first characterized microglia in histological stains of brain tissue. Since then, significant advances have been made in understanding the role of these resident central nervous system (CNS) macrophages. In particular, it is now known that microglia can sense neural activity and modulate neuronal circuits accordingly. We review the mechanisms by which microglia detect changes in neural activity to then modulate synapse numbers in the developing and mature CNS. This includes responses to both spontaneous and experience-driven neural activity. We further discuss activity-dependent mechanisms by which microglia regulate synaptic function and neural circuit excitability. Together, our discussion provides a comprehensive review of the activity-dependent functions of microglia within neural circuits in the healthy CNS, and highlights exciting new open questions related to understanding more fully microglia as key components and regulators of neural circuits.
  • Vitamin B produced by gut bacteria modulates cholinergic signalling

    Kang, Woo Kyu; Florman, Jeremy T; Araya, Antonia; Fox, Bennett W; Thackeray, Andrea; Schroeder, Frank C; Walhout, Albertha J M; Alkema, Mark J (2024-01-02)
    A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.
  • ATXN2 is a target of N-terminal proteolysis

    Chitre, Monika; Emery, Patrick (2023-12-21)
    Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder caused by the expansion of the poly-glutamine (polyQ) tract of Ataxin-2 (ATXN2). Other polyQ-containing proteins such as ATXN7 and huntingtin are associated with the development of neurodegenerative diseases when their N-terminal polyQ domains are expanded. Furthermore, they undergo proteolytic processing events that produce N-terminal fragments that include the polyQ stretch, which are implicated in pathogenesis. Interestingly, N-terminal ATXN2 fragments were reported in a brain extract from a SCA2 patient, but it is currently unknown whether an expanded polyQ domain contributes to ATXN2 proteolytic susceptibility. Here, we used transient expression in HEK293 cells to determine whether ATXN2 is a target for specific N-terminal proteolysis. We found that ATXN2 proteins with either normal or expanded polyQ stretches undergo proteolytic cleavage releasing an N-terminal polyQ-containing fragment. We identified a short amino acid sequence downstream of the polyQ domain that is necessary for N-terminal cleavage of full-length ATXN2 and sufficient to induce proteolysis of a heterologous protein. However, this sequence is not required for cleavage of a short ATXN2 isoform produced from an alternative start codon located just upstream of the CAG repeats encoding the polyQ domain. Our study extends our understanding of ATXN2 posttranslational regulation by revealing that this protein can be the target of specific proteolytic cleavage events releasing polyQ-containing products that are modulated by the N-terminal domain of ATXN2. N-terminal ATXN2 proteolysis of expanded polyQ domains might contribute to SCA2 pathology, as observed in other neurodegenerative disorders caused by polyQ domain expansion.
  • A neuronal coping mechanism linking stress-induced anxiety to motivation for reward

    Klenowski, Paul M; Zhao-Shea, Rubing; Freels, Timothy G; Molas, Susanna; Zinter, Max; M'Angale, Peter; Xiao, Cong; Martinez-Núñez, Leonora; Thomson, Travis; Tapper, Andrew R (2023-12-06)
    Stress coping involves innate and active motivational behaviors that reduce anxiety under stressful situations. However, the neuronal bases directly linking stress, anxiety, and motivation are largely unknown. Here, we show that acute stressors activate mouse GABAergic neurons in the interpeduncular nucleus (IPN). Stress-coping behavior including self-grooming and reward behavior including sucrose consumption inherently reduced IPN GABAergic neuron activity. Optogenetic silencing of IPN GABAergic neuron activation during acute stress episodes mimicked coping strategies and alleviated anxiety-like behavior. In a mouse model of stress-enhanced motivation for sucrose seeking, photoinhibition of IPN GABAergic neurons reduced stress-induced motivation for sucrose, whereas photoactivation of IPN GABAergic neurons or excitatory inputs from medial habenula potentiated sucrose seeking. Single-cell sequencing, fiber photometry, and optogenetic experiments revealed that stress-activated IPN GABAergic neurons that drive motivated sucrose seeking express somatostatin. Together, these data suggest that stress induces innate behaviors and motivates reward seeking to oppose IPN neuronal activation as an anxiolytic stress-coping mechanism.
  • The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling

    Alexander, Kellianne D; Ramachandran, Shankar; Biswas, Kasturi; Lambert, Christopher M; Russell, Julia; Oliver, Devyn B; Armstrong, William; Rettler, Monika; Liu, Samuel; Doitsidou, Maria; et al. (2023-11-18)
    The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.
  • PARP knockdown promotes synapse reformation after axon injury [preprint]

    Belew, Micah Y; Huang, Wenjia; Florman, Jeremy T; Alkema, Mark J; Byrne, Alexandra B (2023-11-05)
    Injured nervous systems are often incapable of self-repairing, resulting in permanent loss of function and disability. To restore function, a severed axon must not only regenerate, but must also reform synapses with target cells. Together, these processes beget functional axon regeneration. Progress has been made towards a mechanistic understanding of axon regeneration. However, the molecular mechanisms that determine whether and how synapses are formed by a regenerated motor axon are not well understood. Using a combination of in vivo laser axotomy, genetics, and high-resolution imaging, we find that poly (ADP-ribose) polymerases (PARPs) inhibit synapse reformation in regenerating axons. As a result, regenerated parp(-) axons regain more function than regenerated wild-type axons, even though both have reached their target cells. We find that PARPs regulate both axon regeneration and synapse reformation in coordination with proteolytic calpain CLP-4. These results indicate approaches to functionally repair the injured nervous system must specifically target synapse reformation, in addition to other components of the injury response.
  • Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment

    Stillman, Jacob M; Mendes Lopes, Francisco; Lin, Jing-Ping; Hu, Kevin; Reich, Daniel S; Schafer, Dorothy P (2023-11-03)
    Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.

View more