Now showing items 1-20 of 633

    • Vitamin B produced by gut bacteria modulates cholinergic signalling

      Kang, Woo Kyu; Florman, Jeremy T; Araya, Antonia; Fox, Bennett W; Thackeray, Andrea; Schroeder, Frank C; Walhout, Albertha J M; Alkema, Mark J (2024-01-02)
      A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.
    • ATXN2 is a target of N-terminal proteolysis

      Chitre, Monika; Emery, Patrick (2023-12-21)
      Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder caused by the expansion of the poly-glutamine (polyQ) tract of Ataxin-2 (ATXN2). Other polyQ-containing proteins such as ATXN7 and huntingtin are associated with the development of neurodegenerative diseases when their N-terminal polyQ domains are expanded. Furthermore, they undergo proteolytic processing events that produce N-terminal fragments that include the polyQ stretch, which are implicated in pathogenesis. Interestingly, N-terminal ATXN2 fragments were reported in a brain extract from a SCA2 patient, but it is currently unknown whether an expanded polyQ domain contributes to ATXN2 proteolytic susceptibility. Here, we used transient expression in HEK293 cells to determine whether ATXN2 is a target for specific N-terminal proteolysis. We found that ATXN2 proteins with either normal or expanded polyQ stretches undergo proteolytic cleavage releasing an N-terminal polyQ-containing fragment. We identified a short amino acid sequence downstream of the polyQ domain that is necessary for N-terminal cleavage of full-length ATXN2 and sufficient to induce proteolysis of a heterologous protein. However, this sequence is not required for cleavage of a short ATXN2 isoform produced from an alternative start codon located just upstream of the CAG repeats encoding the polyQ domain. Our study extends our understanding of ATXN2 posttranslational regulation by revealing that this protein can be the target of specific proteolytic cleavage events releasing polyQ-containing products that are modulated by the N-terminal domain of ATXN2. N-terminal ATXN2 proteolysis of expanded polyQ domains might contribute to SCA2 pathology, as observed in other neurodegenerative disorders caused by polyQ domain expansion.
    • A neuronal coping mechanism linking stress-induced anxiety to motivation for reward

      Klenowski, Paul M; Zhao-Shea, Rubing; Freels, Timothy G; Molas, Susanna; Zinter, Max; M'Angale, Peter; Xiao, Cong; Martinez-Núñez, Leonora; Thomson, Travis; Tapper, Andrew R (2023-12-06)
      Stress coping involves innate and active motivational behaviors that reduce anxiety under stressful situations. However, the neuronal bases directly linking stress, anxiety, and motivation are largely unknown. Here, we show that acute stressors activate mouse GABAergic neurons in the interpeduncular nucleus (IPN). Stress-coping behavior including self-grooming and reward behavior including sucrose consumption inherently reduced IPN GABAergic neuron activity. Optogenetic silencing of IPN GABAergic neuron activation during acute stress episodes mimicked coping strategies and alleviated anxiety-like behavior. In a mouse model of stress-enhanced motivation for sucrose seeking, photoinhibition of IPN GABAergic neurons reduced stress-induced motivation for sucrose, whereas photoactivation of IPN GABAergic neurons or excitatory inputs from medial habenula potentiated sucrose seeking. Single-cell sequencing, fiber photometry, and optogenetic experiments revealed that stress-activated IPN GABAergic neurons that drive motivated sucrose seeking express somatostatin. Together, these data suggest that stress induces innate behaviors and motivates reward seeking to oppose IPN neuronal activation as an anxiolytic stress-coping mechanism.
    • The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling

      Alexander, Kellianne D; Ramachandran, Shankar; Biswas, Kasturi; Lambert, Christopher M; Russell, Julia; Oliver, Devyn B; Armstrong, William; Rettler, Monika; Liu, Samuel; Doitsidou, Maria; et al. (2023-11-18)
      The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.
    • PARP knockdown promotes synapse reformation after axon injury [preprint]

      Belew, Micah Y; Huang, Wenjia; Florman, Jeremy T; Alkema, Mark J; Byrne, Alexandra B (2023-11-05)
      Injured nervous systems are often incapable of self-repairing, resulting in permanent loss of function and disability. To restore function, a severed axon must not only regenerate, but must also reform synapses with target cells. Together, these processes beget functional axon regeneration. Progress has been made towards a mechanistic understanding of axon regeneration. However, the molecular mechanisms that determine whether and how synapses are formed by a regenerated motor axon are not well understood. Using a combination of in vivo laser axotomy, genetics, and high-resolution imaging, we find that poly (ADP-ribose) polymerases (PARPs) inhibit synapse reformation in regenerating axons. As a result, regenerated parp(-) axons regain more function than regenerated wild-type axons, even though both have reached their target cells. We find that PARPs regulate both axon regeneration and synapse reformation in coordination with proteolytic calpain CLP-4. These results indicate approaches to functionally repair the injured nervous system must specifically target synapse reformation, in addition to other components of the injury response.
    • Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment

      Stillman, Jacob M; Mendes Lopes, Francisco; Lin, Jing-Ping; Hu, Kevin; Reich, Daniel S; Schafer, Dorothy P (2023-11-03)
      Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.
    • Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy [preprint]

      Guo, Min; Wu, Yicong; Su, Yijun; Qian, Shuhao; Krueger, Eric; Christensen, Ryan; Kroeschell, Grant; Bui, Johnny; Chaw, Matthew; Zhang, Lixia; et al. (2023-10-24)
      Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics into the imaging path. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations. We use simulations to show that applying the trained 'de-aberration' networks outperforms alternative methods, and subsequently apply the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution microscopy. In all cases, the improved quality of the restored data facilitates qualitative image inspection and improves downstream image quantitation, including orientational analysis of blood vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos.
    • Sexually dimorphic mechanisms of VGLUT-mediated protection from dopaminergic neurodegeneration [preprint]

      Buck, Silas A; Rubin, Sophie A; Kunkhyen, Tenzin; Treiber, Christoph D; Xue, Xiangning; Fenno, Lief E; Mabry, Samuel J; Sundar, Varun R; Yang, Zilu; Shah, Divia; et al. (2023-10-03)
      Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1β as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.
    • A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain [preprint]

      Lin, Jing-Ping; Brake, Alexis; Donadieu, Maxime; Lee, Amanda; Kawaguchi, Riki; Sati, Pascal; Geschwind, Daniel H; Jacobson, Steven; Schafer, Dorothy P; Reich, Daniel S (2023-09-27)
      Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.
    • Identifying new players in structural synaptic plasticity through dArc1 interrogation

      Xiao, Cong; M'Angale, P Githure; Wang, Shuhao; Lemieux, Adrienne; Thomson, Travis (2023-09-27)
      The formation, expansion, and pruning of synapses, known as structural synaptic plasticity, is needed for learning and memory, and perturbation of plasticity is associated with many neurological disorders and diseases. Previously, we observed that the Drosophila homolog of Activity-regulated cytoskeleton-associated protein (dArc1), forms a capsid-like structure, associates with its own mRNA, and is transported across synapses. We demonstrated that this transfer is needed for structural synaptic plasticity. To identify mRNAs that are modified by dArc1 in presynaptic neuron and postsynaptic muscle, we disrupted the expression of dArc1 and performed genomic analysis with deep sequencing. We found that dArc1 affects the expression of genes involved in metabolism, phagocytosis, and RNA-splicing. Through immunoprecipitation we also identified potential mRNA cargos of dArc1 capsids. This study suggests that dArc1 acts as a master regulator of plasticity by affecting several distinct and highly conserved cellular processes.
    • A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission

      Huang, Yung-Chi; Luo, Jinyue; Huang, Wenjia; Baker, Casey M; Gomes, Matthew A; Meng, Bohan; Byrne, Alexandra B; Flavell, Steven W (2023-09-21)
      Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.
    • A comparative analysis of microglial inducible Cre lines

      Faust, Travis E; Feinberg, Philip A; O'Connor, Ciara; Kawaguchi, Riki; Chan, Andrew; Strasburger, Hayley; Frosch, Maximilian; Boyle, Margaret A; Masuda, Takahiro; Amann, Lukas; et al. (2023-08-26)
      Cre/loxP technology has revolutionized genetic studies and allowed for spatial and temporal control of gene expression in specific cell types. Microglial biology has particularly benefited because microglia historically have been difficult to transduce with virus or electroporation methods for gene delivery. Here, we investigate five of the most widely available microglial inducible Cre lines. We demonstrate varying degrees of recombination efficiency, cell-type specificity, and spontaneous recombination, depending on the Cre line and inter-loxP distance. We also establish best practice guidelines and protocols to measure recombination efficiency, particularly in microglia. There is increasing evidence that microglia are key regulators of neural circuits and major drivers of a broad range of neurological diseases. Reliable manipulation of their function in vivo is of utmost importance. Identifying caveats and benefits of all tools and implementing the most rigorous protocols are crucial to the growth of the field and the development of microglia-based therapeutics.
    • Regulation of Presynaptic Release Machinery by Cell Adhesion Molecules

      Uchigashima, Motokazu; Hayashi, Yasunori; Futai, Kensuke (2023-08-25)
      The synapse is a highly specialized asymmetric structure that transmits and stores information in the brain. The size of pre- and postsynaptic structures and function is well coordinated at the individual synapse level. For example, large postsynaptic dendritic spines have a larger postsynaptic density with higher α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) number on their surface, while juxtaposing presynaptic terminals have a larger active zone and higher release probability. This indicates that pre- and postsynaptic domains bidirectionally communicate to coordinate assembly of specific molecules on both sides of the synaptic cleft. Cell adhesion molecules (CAMs) that localize at synapses form transsynaptic protein interactions across the synaptic cleft and play important roles in synapse formation and regulation. The extracellular domain of CAMs is essential for specific synapse formation and function. In contrast, the intracellular domain is necessary for binding with synaptic molecules and signal transduction. Therefore, CAMs play an essential role on synapse function and structure. In fact, ample evidence indicates that transsynaptic CAMs instruct and modulate functions at presynaptic sites. This chapter focuses on transsynaptic protein interactions that regulate presynaptic functions emphasizing the role of neuronal CAMs and the intracellular mechanism of their regulation.
    • Thyroid hormone rewires cortical circuits to coordinate body-wide metabolism and exploratory drive [preprint]

      Hochbaum, Daniel R; Dubinsky, Alexandra C; Farnsworth, Hannah C; Hulshof, Lauren; Kleinberg, Giona; Urke, Amanda; Wang, Wengang; Hakim, Richard; Robertson, Keira; Park, Canaria; et al. (2023-08-10)
      Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.
    • Feed-forward Activation of Habenula Cholinergic Neurons by Local Acetylcholine

      Chung, Leeyup; Jing, Miao; Li, Yulong; Tapper, Andrew R (2023-08-10)
      While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.
    • Systems neuroscience: Foraging through serotonin's tangled web

      Yemini, Eviatar (2023-07-24)
      Serotonin signaling is conserved in regulating animal behaviors. A new paper decodes the nonlinear effects of all serotonin receptor combinations on foraging behaviors. The authors introduce a brain-wide multiscale method to dissect receptor dynamics, receptor effects on neural activity, and resulting behavioral changes.
    • Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks

      Nejatbakhsh, Amin; Dey, Neel; Venkatachalam, Vivek; Yemini, Eviatar; Paninski, Liam; Varol, Erdem (2023-06-08)
      Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at
    • Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia [preprint]

      Funes, Salome; Gadd, Del Hayden; Mosqueda, Michelle; Zhong, Jianjun; Jung, Jonathan; Shankaracharya; Unger, Matthew; Cameron, Debra; Dawes, Pepper; Keagle, Pamela J; et al. (2023-06-01)
      Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be fully elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited lipid dysmetabolism and deficits in phagocytosis, a critical microglia function. Our cumulative data implicate an effect of ALS-linked PFN1 on the autophagy pathway, including enhanced binding of mutant PFN1 to the autophagy signaling molecule PI3P, as an underlying cause of defective phagocytosis in ALS-PFN1 iMGs. Indeed, phagocytic processing was restored in ALS-PFN1 iMGs with Rapamycin, an inducer of autophagic flux. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and highlight microglia vesicular degradation pathways as potential therapeutic targets for these disorders.
    • Sensitive Timing: A Reappraisal of Chronobiology's Foundational Texts

      Emery, Patrick; Klarsfeld, André; Stanewsky, Ralf; Shafer, Orie T (2023-05-25)
      The origin of experimental chronobiology can be traced to observations made in the 18th and 19th centuries on the sensitive plant Mimosa, which were described in two seminal reports: Jean-Jacques d'Ortous de Mairan's "Observation Botanique" (A Botanical Observation) and Augustin Pyramus de Candolle's "Du sommeil des feuilles" (On the sleep of leaves). Both report observations of the striking daily closing and opening of Mimosa leaves in controlled environments. This review presents translations of both texts with the aim of staying as faithful as possible to the original French texts. We also present the historical context in which these texts were written and link them to subsequent experiments that aimed at testing the veracity of their central conclusions. In particular, we definitely establish that Mairan himself presented his work to the French Royal Academy of Sciences, while the published report of his observation was authored by Fontenelle, the Secretary of the Academy. In addition, we offer a translation of Mairan's own presentation, based on the hand-written minutes of the academy. Finally, we discuss the decades of work on plant rhythms that laid the foundation for modern experimental chronobiology, including translations and discussion of the insightful and prescient reports by Charles François de Cisternay Dufay, Henri Louis Duhamel du Monceau, Johann Gottfried Zinn, and Wilhelm Pfeffer, which describe their efforts to reproduce and extend Mairan's pioneering observations.
    • TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila

      Gong, Jiaxin; Nirala, Niraj K; Chen, Jiazhang; Wang, Fei; Gu, Pengyu; Wen, Qi; Ip, Y Tony; Xiang, Yang (2023-05-24)
      Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.