Now showing items 1-20 of 387

    • GLH/VASA helicases promote germ granule formation to ensure the fidelity of piRNA-mediated transcriptome surveillance

      Chen, Wenjun; Brown, Jordan S; He, Tao; Wu, Wei-Sheng; Tu, Shikui; Weng, Zhiping; Zhang, Donglei; Lee, Heng-Chi (2022-09-09)
      piRNAs function as guardians of the genome by silencing non-self nucleic acids and transposable elements in animals. Many piRNA factors are enriched in perinuclear germ granules, but whether their localization is required for piRNA biogenesis or function is not known. Here we show that GLH/VASA helicase mutants exhibit defects in forming perinuclear condensates containing PIWI and other small RNA cofactors. These mutant animals produce largely normal levels of piRNA but are defective in triggering piRNA silencing. Strikingly, while many piRNA targets are activated in GLH mutants, we observe that hundreds of endogenous genes are aberrantly silenced by piRNAs. This defect in self versus non-self recognition is also observed in other mutants where perinuclear germ granules are disrupted. Together, our results argue that perinuclear germ granules function critically to promote the fidelity of piRNA-based transcriptome surveillance in C. elegans and preserve self versus non-self distinction.
    • Building integrative functional maps of gene regulation

      Xu, Jinrui; Pratt, Henry; Moore, Jill E.; Gerstein, Mark B.; Weng, Zhiping (2022-09-09)
      Every cell in the human body inherits a copy of the same genetic information. The three billion base pairs of DNA in the human genome, and the roughly 50 000 coding and non-coding genes they contain, must thus encode all the complexity of human development and cell and tissue type diversity. Differences in gene regulation, or the modulation of gene expression, enable individual cells to interpret the genome differently to carry out their specific functions. Here we discuss recent and ongoing efforts to build gene regulatory maps, which aim to characterize all sequences in a genome for their roles in regulating gene expression. Many researchers and consortia have identified such regulatory elements using functional assays and evolutionary analyses; we discuss the results, strengths, and shortcomings of their approaches. We also discuss new techniques the field can leverage and emerging challenges it will face while striving to build gene regulatory maps of ever-increasing resolution and comprehensiveness.
    • Efficient Homology-Directed Repair with Circular Single-Stranded DNA Donors

      Iyer, Sukanya; Mir, Aamir; Vega-Badillo, Joel; Roscoe, Benjamin P; Ibraheim, Raed; Zhu, Lihua Julie; Lee, Jooyoung; Liu, Pengpeng; Luk, Kevin; Mintzer, Esther; et al. (2022-09-07)
      While genome editing has been revolutionized by the advent of CRISPR-based nucleases, difficulties in achieving efficient, nuclease-mediated, homology-directed repair (HDR) still limit many applications. Commonly used DNA donors such as plasmids suffer from low HDR efficiencies in many cell types, as well as integration at unintended sites. In contrast, single-stranded DNA (ssDNA) donors can produce efficient HDR with minimal off-target integration. In this study, we describe the use of ssDNA phage to efficiently and inexpensively produce long circular ssDNA (cssDNA) donors. These cssDNA donors serve as efficient HDR templates when used with Cas9 or Cas12a, with integration frequencies superior to linear ssDNA (lssDNA) donors. To evaluate the relative efficiencies of imprecise and precise repair for a suite of different Cas9 or Cas12a nucleases, we have developed a modified traffic light reporter (TLR) system (TLR-multi-Cas variant 1 [MCV1]) that permits side-by-side comparisons of different nuclease systems. We used this system to assess editing and HDR efficiencies of different nuclease platforms with distinct DNA donor types. We then extended the analysis of DNA donor types to evaluate efficiencies of fluorescent tag knockins at endogenous sites in HEK293T and K562 cells. Our results show that cssDNA templates produce efficient and robust insertion of reporter tags. Targeting efficiency is high, allowing production of biallelic integrants using cssDNA donors. cssDNA donors also outcompete lssDNA donors in template-driven repair at the target site. These data demonstrate that circular donors provide an efficient, cost-effective method to achieve knockins in mammalian cell lines.
    • Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder

      Lim, Elaine T.; Chan, Yingleong; Dawes, Pepper; Erdin, Serkan; Reichert, Julia M.; Burns, Mannix J.; Church, George M. (2022-06-10)
      Cerebral organoids can be used to gain insights into cell type specific processes perturbed by genetic variants associated with neuropsychiatric disorders. However, robust and scalable phenotyping of organoids remains challenging. Here, we perform RNA sequencing on 71 samples comprising 1,420 cerebral organoids from 25 donors, and describe a framework (Orgo-Seq) to integrate bulk RNA and single-cell RNA sequence data. We apply Orgo-Seq to 16p11.2 deletions and 15q11-13 duplications, two loci associated with autism spectrum disorder, to identify immature neurons and intermediate progenitor cells as critical cell types for 16p11.2 deletions. We further applied Orgo-Seq to identify cell type-specific driver genes. Our work presents a quantitative phenotyping framework to integrate multi-transcriptomic datasets for the identification of cell types and cell type-specific co-expressed driver genes associated with neuropsychiatric disorders.
    • Single cell transcriptomics reveals dysregulated cellular and molecular networks in a fragile X syndrome model

      Donnard, Elisa; Shu, Huan; Garber, Manuel (2022-06-08)
      Despite advances in understanding the pathophysiology of Fragile X syndrome (FXS), its molecular basis is still poorly understood. Whole brain tissue expression profiles have proved surprisingly uninformative, therefore we applied single cell RNA sequencing to profile an FMRP deficient mouse model with higher resolution. We found that the absence of FMRP results in highly cell type specific gene expression changes that are strongest among specific neuronal types, where FMRP-bound mRNAs were prominently downregulated. Metabolic pathways including translation and respiration are significantly upregulated across most cell types with the notable exception of excitatory neurons. These effects point to a potential difference in the activity of mTOR pathways, and together with other dysregulated pathways, suggest an excitatory-inhibitory imbalance in the Fmr1-knock out cortex that is exacerbated by astrocytes. Our data demonstrate that FMRP loss affects abundance of key cellular communication genes that potentially affect neuronal synapses and provide a resource for interrogating the biological basis of this disorder.
    • Risk Prediction Score for Pediatric Patients with Suspected Ebola Virus Disease

      Genisca, Alicia E.; Chu, Tzu-Chun; Huang, Lawrence; Gainey, Monique; Adeniji, Moyinoluwa; Mbong, Eta N.; Kennedy, Stephen B.; Laghari, Razia; Nganga, Fiston; Muhayangabo, Rigo F.; et al. (2022-06-01)
      Rapid diagnostic tools for children with Ebola virus disease (EVD) are needed to expedite isolation and treatment. To evaluate a predictive diagnostic tool, we examined retrospective data (2014-2015) from the International Medical Corps Ebola Treatment Centers in West Africa. We incorporated statistically derived candidate predictors into a 7-point Pediatric Ebola Risk Score. Evidence of bleeding or having known or no known Ebola contacts was positively associated with an EVD diagnosis, whereas abdominal pain was negatively associated. Model discrimination using area under the curve (AUC) was 0.87, which outperforms the World Health Organization criteria (AUC 0.56). External validation, performed by using data from International Medical Corps Ebola Treatment Centers in the Democratic Republic of the Congo during 2018-2019, showed an AUC of 0.70. External validation showed that discrimination achieved by using World Health Organization criteria was similar; however, the Pediatric Ebola Risk Score is simpler to use.
    • Ancestry-inclusive dog genomics challenges popular breed stereotypes

      Morrill, Kathleen; Li, Xue; McClure, Jesse; Logan, Brittney; Gao, Mingshi; Dong, Yinan; Carmichael, Elena; White, Michelle E.; Weng, Zhiping; Colubri, Andres; et al. (2022-04-29)
      Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h(2)) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
    • MafB, WDR77, and ß-catenin interact with each other and have similar genome association profiles

      He, Lizhi; Gao, Mingshi; Pratt, Henry E.; Weng, Zhiping; Struhl, Kevin (2022-04-28)
      MafB (a bZIP transcription factor), ss-catenin (the ultimate target of the Wnt signal transduction pathway that acts as a transcriptional co-activator of LEF/TCF proteins), and WDR77 (a transcriptional co-activator of multiple hormone receptors) are important for breast cellular transformation. Unexpectedly, these proteins interact directly with each other, and they have similar genomic binding profiles. Furthermore, while some of these common target sites coincide with those bound by LEF/TCF, the majority are located just downstream of transcription initiation sites at a position near paused RNA polymerase (Pol II) and the +1 nucleosome. Occupancy levels of these factors at these promoter-proximal sites are strongly correlated with the level of paused Pol II and transcriptional activity.
    • AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice

      Wang, Jiaming; Zhang, Yue; Mendonca, Craig A.; Yukselen, Onur; Muneeruddin, Khaja; Ren, Lingzhi; Liang, Jialing; Zhou, Chen; Xie, Jun; Li, Jia; et al. (2022-03-23)
      Gene therapy is a potentially curative medicine for many currently untreatable diseases, and recombinant adeno-associated virus (rAAV) is the most successful gene delivery vehicle for in vivo applications(1-3). However, rAAV-based gene therapy suffers from several limitations, such as constrained DNA cargo size and toxicities caused by non-physiological expression of a transgene(4-6). Here we show that rAAV delivery of a suppressor tRNA (rAAV.sup-tRNA) safely and efficiently rescued a genetic disease in a mouse model carrying a nonsense mutation, and effects lasted for more than 6 months after a single treatment. Mechanistically, this was achieved through a synergistic effect of premature stop codon readthrough and inhibition of nonsense-mediated mRNA decay. rAAV.sup-tRNA had a limited effect on global readthrough at normal stop codons and did not perturb endogenous tRNA homeostasis, as determined by ribosome profiling and tRNA sequencing, respectively. By optimizing the AAV capsid and the route of administration, therapeutic efficacy in various target tissues was achieved, including liver, heart, skeletal muscle and brain. This study demonstrates the feasibility of developing a toolbox of AAV-delivered nonsense suppressor tRNAs operating on premature termination codons (AAV-NoSTOP) to rescue pathogenic nonsense mutations and restore gene function under endogenous regulation. As nonsense mutations account for 11% of pathogenic mutations, AAV-NoSTOP can benefit a large number of patients. AAV-NoSTOP obviates the need to deliver a full-length protein-coding gene that may exceed the rAAV packaging limit, elicit adverse immune responses or cause transgene-related toxicities. It therefore represents a valuable addition to gene therapeutics.
    • Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing

      Wang, I-Hao; Andrews, Gregory; Donnard, Elisa; Duran-Laforet, Violeta; Faust, Travis E.; Garber, Manuel; Baer, Christina E.; Schafer, Dorothy P.; Weng, Zhiping; Greer, Paul L. (2022-03-21)
      The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.
    • Comparison of Rapid Antigen Tests' Performance between Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) Variants of SARS-CoV-2: Secondary Analysis from a Serial Home Self-Testing Study [preprint]

      Soni, Apurv; Herbert, Carly; Filippaios, Andreas; Broach, John P.; Colubri, Andres; Fahey, Nisha; Woods, Kelsey; Nanavati, Janvi; Wright, Colton; Orwig, Taylor; et al. (2022-03-02)
      Background: There is a need to understand the performance of rapid antigen tests (Ag-RDT) for detection of the Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) SARS-CoV-2 variants. Methods: Participants without any symptoms were enrolled from October 18, 2021 to January 24, 2022 and performed Ag-RDT and RT-PCR tests every 48 hours for 15 days. This study represents a non-pre-specified analysis in which we sought to determine if sensitivity of Ag-RDT differed in participants with Delta compared to Omicron variant. Participants who were positive on RT-PCR on the first day of the testing period were excluded. Delta and Omicron variants were defined based on sequencing and date of first RT-PCR positive result (RT-PCR+). Comparison of Ag-RDT performance between the variants was based on sensitivity, defined as proportion of participants with Ag-RDT+ results in relation to their first RT-PCR+ result, for different duration of testing with rapid Ag-RDT. Subsample analysis was performed based on the result of participants' second RT-PCR test within 48 hours of the first RT-PCR+ test. Results: From the 7,349 participants enrolled in the parent study, 5,506 met the eligibility criteria for this analysis. A total of 153 participants were RT-PCR+ (61 Delta, 92 Omicron); among this group, 36 (23.5%) tested Ag-RDT+ on the same day, and 84 (54.9%) tested Ag-RDT+ within 48 hours as first RT-PCR+. The differences in sensitivity between variants were not statistically significant (same-day: Delta 16.4% [95% CI: 8.2-28.1] vs Omicron 28.2% [95% CI: 19.4-38.6]; and 48-hours: Delta 45.9% [33.1-59.2] vs. Omicron 60.9% [50.1-70.9]). This trend continued among the 86 participants who had consecutive RT-PCR+ result (48-hour sensitivity: Delta 79.3% [60.3-92.1] vs. Omicron: 89.5% [78.5-96.0]). Conversely, the 38 participants who had an isolated RT-PCR+ remained consistently negative on Ag-RDT, regardless of the variant. Conclusions: The performance of Ag-RDT is not inferior among individuals infected with the SARS-CoV-2 Omicron variant as compared to the Delta variant. The improvement in sensitivity of Ag-RDT noted with serial testing is consistent between Delta and Omicron variant. Performance of Ag-RDT varies based on duration of RT-PCR+ results and more studies are needed to understand the clinical and public health significance of individuals who are RT-PCR+ for less than 48 hours.
    • The Antarctic Weddell seal genome reveals evidence of selection on cardiovascular phenotype and lipid handling

      Noh, Hyun Ji.; Turner-Maier, Jason; Schulberg, S. Anne; Fitzgerald, Michael L.; Johnson, Jeremy; Allen, Kaitlin N.; Huckstadt, Luis A.; Batten, Annabelle J.; Alfoldi, Jessica; Costa, Daniel P.; et al. (2022-02-17)
      The Weddell seal (Leptonychotes weddellii) thrives in its extreme Antarctic environment. We generated the Weddell seal genome assembly and a high-quality annotation to investigate genome-wide evolutionary pressures that underlie its phenotype and to study genes implicated in hypoxia tolerance and a lipid-based metabolism. Genome-wide analyses included gene family expansion/contraction, positive selection, and diverged sequence (acceleration) compared to other placental mammals, identifying selection in coding and non-coding sequence in five pathways that may shape cardiovascular phenotype. Lipid metabolism as well as hypoxia genes contained more accelerated regions in the Weddell seal compared to genomic background. Top-significant genes were SUMO2 and EP300; both regulate hypoxia inducible factor signaling. Liver expression of four genes with the strongest acceleration signals differ between Weddell seals and a terrestrial mammal, sheep. We also report a high-density lipoprotein-like particle in Weddell seal serum not present in other mammals, including the shallow-diving harbor seal.
    • The case for altruism in institutional diagnostic testing

      Specht, Ivan; Sani, Kian; Botti-Lodovico, Yolanda; Hughes, Michael; Heumann, Kristin; Bronson, Amy; Marshall, John; Baron, Emily; Parrie, Eric; Glennon, Olivia; et al. (2022-02-03)
      Amid COVID-19, many institutions deployed vast resources to test their members regularly for safe reopening. This self-focused approach, however, not only overlooks surrounding communities but also remains blind to community transmission that could breach the institution. To test the relative merits of a more altruistic strategy, we built an epidemiological model that assesses the differential impact on case counts when institutions instead allocate a proportion of their tests to members' close contacts in the larger community. We found that testing outside the institution benefits the institution in all plausible circumstances, with the optimal proportion of tests to use externally landing at 45% under baseline model parameters. Our results were robust to local prevalence, secondary attack rate, testing capacity, and contact reporting level, yielding a range of optimal community testing proportions from 18 to 58%. The model performed best under the assumption that community contacts are known to the institution; however, it still demonstrated a significant benefit even without complete knowledge of the contact network.
    • Containing the spread of mumps on college campuses

      Shah, Mirai; Ferra, Gabrielle; Fitzgerald, Susan; Barreira, Paul J.; Sabeti, Pardis C.; Colubri, Andres (2022-01-26)
      College campuses are vulnerable to infectious disease outbreaks, and there is an urgent need to develop better strategies to mitigate their size and duration, particularly as educational institutions around the world adapt to in-person instruction during the COVID-19 pandemic. Towards addressing this need, we applied a stochastic compartmental model to quantify the impact of university-level responses to contain a mumps outbreak at Harvard University in 2016. We used our model to determine which containment interventions were most effective and study alternative scenarios without and with earlier interventions. This model allows for stochastic variation in small populations, missing or unobserved case data and changes in disease transmission rates post-intervention. The results suggest that control measures implemented by the University's Health Services, including rapid isolation of suspected cases, were very effective at containing the outbreak. Without those measures, the outbreak could have been four times larger. More generally, we conclude that universities should apply (i) diagnostic protocols that address false negatives from molecular tests and (ii) strict quarantine policies to contain the spread of easily transmissible infectious diseases such as mumps among their students. This modelling approach could be applied to data from other outbreaks in college campuses and similar small population settings.
    • Darwinian genomics and diversity in the tree of life

      Stephan, Taylorlyn; Karlsson, Elinor K. (2022-01-25)
      Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of approximately 2,000,000 eukaryotic species ( < 1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.
    • Why sequence all eukaryotes

      Blaxter, Mark; Karlsson, Elinor K. (2022-01-18)
      Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
    • The Earth BioGenome Project 2020: Starting the clock

      Lewin, Harris A.; Karlsson, Elinor K. (2022-01-18)
      November 2020 marked 2 y since the launch of the Earth BioGenome Project (EBP), which aims to sequence all known eukaryotic species in a 10-y timeframe. Since then, significant progress has been made across all aspects of the EBP roadmap, as outlined in the 2018 article describing the project’s goals, strategies, and challenges (1). The launch phase has ended and the clock has started on reaching the EBP’s major milestones. This Special Feature explores the many facets of the EBP, including a review of progress, a description of major scientific goals, exemplar projects, ethical legal and social issues, and applications of biodiversity genomics. In this Introduction, we summarize the current status of the EBP, held virtually October 5 to 9, 2020, including recent updates through February 2021. References to the nine Perspective articles included in this Special Feature are cited to guide the reader toward deeper understanding of the goals and challenges facing the EBP.
    • Factorbook: an updated catalog of transcription factor motifs and candidate regulatory motif sites

      Pratt, Henry E.; Andrews, Gregory; Phalke, Nishigandha; Purcaro, Michael J.; van der Velde, Arjan; Moore, Jill E.; Weng, Zhiping (2022-01-07)
      The human genome contains approximately 2000 transcriptional regulatory proteins, including approximately 1600 DNA-binding transcription factors (TFs) recognizing characteristic sequence motifs to exert regulatory effects on gene expression. The binding specificities of these factors have been profiled both in vitro, using techniques such as HT-SELEX, and in vivo, using techniques including ChIP-seq. We previously developed Factorbook, a TF-centric database of annotations, motifs, and integrative analyses based on ChIP-seq data from Phase II of the ENCODE Project. Here we present an update to Factorbook which significantly expands the breadth of cell type and TF coverage. The update includes an expanded motif catalog derived from thousands of ENCODE Phase II and III ChIP-seq experiments and HT-SELEX experiments; this motif catalog is integrated with the ENCODE registry of candidate cis-regulatory elements to annotate a comprehensive collection of genome-wide candidate TF binding sites. The database also offers novel tools for applying the motif models within machine learning frameworks and using these models for integrative analysis, including annotation of variants and disease and trait heritability. Factorbook is publicly available at www.factorbook.org; we will continue to expand the resource as ENCODE Phase IV data are released.
    • Integration of high-resolution promoter profiling assays reveals novel, cell type-specific transcription start sites across 115 human cell and tissue types

      Moore, Jill E.; Zhang, Xiao-Ou; Elhajjajy, Shaimae I.; Fan, Kaili; Pratt, Henry E.; Reese, Fairlie; Mortazavi, Ali; Weng, Zhiping (2021-12-23)
      Accurate transcription start site (TSS) annotations are essential for understanding transcriptional regulation and its role in human disease. Gene collections such as GENCODE contain annotations for tens of thousands of TSSs, but not all of these annotations are experimentally validated nor do they contain information on cell type-specific usage. Therefore, we sought to generate a collection of experimentally validated TSSs by integrating RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data from 115 cell and tissue types, which resulted in a collection of approximately 50 thousand representative RAMPAGE peaks. These peaks are primarily proximal to GENCODE-annotated TSSs and are concordant with other transcription assays. Because RAMPAGE uses paired-end reads, we were then able to connect peaks to transcripts by analyzing the genomic positions of the 3' ends of read mates. Using this paired-end information, we classified the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS annotations for 20% of GENCODE genes. We also found that these updated TSS annotations are supported by epigenomic and other transcriptomic data sets. To show the utility of this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI genome-wide association study (GWAS) catalog and identified new candidate GWAS genes. Overall, our work shows the importance of integrating experimental data to further refine TSS annotations and provides a valuable resource for the biological community.
    • Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death

      Tsuji, Junko; Thomson, Travis; Brown, Christine; Ghosh, Subhanita; Theurkauf, William E.; Weng, Zhiping; Schwartz, Lawrence M. (2021-12-22)
      PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, approximately 27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5' uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.