We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
 

ABOUT THIS COLLECTION

This collection showcases journal articles and other publications produced by researchers in the Garber Lab. The Garber Lab at UMass Chan Medical School was established in 2012, in the Program in Bioinformatics and Integrative Biology, which evolved into the Department of Genomics and Computational Biology in 2023.

Recently Published

  • Single cell RNA-sequencing reveals molecular signatures that distinguish allergic from irritant contact dermatitis

    Frisoli, Michael L; Ko, Wei-Che C; Martinez, Nuria; Afshari, Khashayar; Wang, Yuqing; Garber, Manuel; Harris, John E (2024-09-26)
    Allergic contact dermatitis (ACD) is a pruritic skin disease caused by environmental chemicals that induce cell-mediated skin inflammation within susceptible individuals. Irritant contact dermatitis (ICD) is caused by direct damage to the skin barrier by environmental insults. Diagnosis can be challenging as both types of contact dermatitis can appear similar by visual exam, and histopathological analysis does not reliably distinguish ACD from ICD. To discover specific biomarkers of ACD and ICD, we characterized the transcriptomic and proteomic changes that occur within the skin during each type of contact dermatitis. We induced ACD and ICD in healthy human volunteers and sampled skin using a non-scarring suction blister biopsy method that collects interstitial fluid and cellular infiltrate. Single cell RNA-sequencing analysis revealed that cell-specific transcriptome differences rather than cell type proportions best distinguished ACD from ICD. Allergy-specific genes were associated with upregulation of IFNG, and cell signaling network analysis implicated several other genes such as IL4, despite their low expression levels. We validated transcriptomic differences with proteomic assays on blister fluid and trained a logistic regression model on skin interstitial fluid proteins that could distinguish ACD from ICD and healthy control skin with 93% sensitivity and 93% specificity.
  • Systemic and skin-limited delayed-type drug hypersensitivity reactions associate with distinct resident and recruited T cell subsets

    Shah, Pranali N; Romar, George A; Manukyan, Artür; Ko, Wei-Che; Hsieh, Pei-Chen; Velasquez, Gustavo A; Schunkert, Elisa M; Fu, Xiaopeng; Guleria, Indira; Bronson, Roderick T; et al. (2024-07-23)
    Delayed-type drug hypersensitivity reactions are major causes of morbidity and mortality. The origin, phenotype and function of pathogenic T cells across the spectrum of severity requires investigation. We leveraged recent technical advancements to study skin-resident memory T cells (TRM) versus recruited T cell subsets in the pathogenesis of severe systemic forms of disease, SJS/TEN and DRESS, and skin-limited disease, morbilliform drug eruption (MDE). Microscopy, bulk transcriptional profiling and scRNAseq + CITEseq + TCRseq supported in SJS/TEN clonal expansion and recruitment of cytotoxic CD8+ T cells from circulation into skin, along with expanded and non-expanded cytotoxic CD8+ skin TRM. Comparatively, MDE displayed a cytotoxic T cell profile in skin without appreciable expansion and recruitment of cytotoxic CD8+ T cells from circulation, implicating TRM as potential protagonists in skin-limited disease. Mechanistic interrogation in patients unable to recruit T cells from circulation into skin and in a parallel mouse model supported that skin TRM were sufficient to mediate MDE. Concomitantly, SJS/TEN displayed a reduced regulatory T cell (Treg) signature compared to MDE. DRESS demonstrated recruitment of cytotoxic CD8+ T cells into skin like SJS/TEN, yet a pro-Treg signature like MDE. These findings have important implications for fundamental skin immunology and clinical care.
  • An Early Islet Transcriptional Signature Is Associated With Local Inflammation in Autoimmune Diabetes

    Derr, Alan G; Arowosegbe, Adediwura; Satish, Basanthi; Redick, Sambra D; Qaisar, Natasha; Guo, Zhiru; Vanderleeden, Emma; Trombly, Melanie I; Baer, Christina E; Harlan, David M; et al. (2022-11-08)
    Identifying the early islet cellular processes of autoimmune type 1 diabetes (T1D) in humans is challenging given the absence of symptoms during this period and the inaccessibility of the pancreas for sampling. In this article, we study temporal events in pancreatic islets in LEW.1WR1 rats, in which autoimmune diabetes can be induced with virus infection, by performing transcriptional analysis of islets harvested during the prediabetic period. Single-cell RNA-sequencing and differential expression analyses of islets from prediabetic rats reveal subsets of β- and α-cells under stress as evidenced by heightened expression, over time, of a transcriptional signature characterized by interferon-stimulated genes, chemokines including Cxcl10, major histocompatibility class I, and genes for the ubiquitin-proteasome system. Mononuclear phagocytes show increased expression of inflammatory markers. RNA-in situ hybridization of rat pancreatic tissue defines the spatial distribution of Cxcl10+ β- and α-cells and their association with CD8+ T cell infiltration, a hallmark of insulitis and islet destruction. Our studies define early islet transcriptional events during immune cell recruitment to islets and reveal spatial associations between stressed β- and α-cells and immune cells. Insights into such early processes can assist in the development of therapeutic and prevention strategies for T1D.
  • Intratracheally administered LNA gapmer antisense oligonucleotides induce robust gene silencing in mouse lung fibroblasts

    Shin, Minwook; Chan, Io Long; Cao, Yuming; Gruntman, Alisha M; Lee, Jonathan; Sousa, Jacquelyn; Rodríguez, Tomás C; Echeverria, Dimas; Devi, Gitali; Debacker, Alexandre J; et al. (2022-08-03)
    The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.
  • Single cell transcriptomics reveals dysregulated cellular and molecular networks in a fragile X syndrome model

    Donnard, Elisa; Shu, Huan; Garber, Manuel (2022-06-08)
    Despite advances in understanding the pathophysiology of Fragile X syndrome (FXS), its molecular basis is still poorly understood. Whole brain tissue expression profiles have proved surprisingly uninformative, therefore we applied single cell RNA sequencing to profile an FMRP deficient mouse model with higher resolution. We found that the absence of FMRP results in highly cell type specific gene expression changes that are strongest among specific neuronal types, where FMRP-bound mRNAs were prominently downregulated. Metabolic pathways including translation and respiration are significantly upregulated across most cell types with the notable exception of excitatory neurons. These effects point to a potential difference in the activity of mTOR pathways, and together with other dysregulated pathways, suggest an excitatory-inhibitory imbalance in the Fmr1-knock out cortex that is exacerbated by astrocytes. Our data demonstrate that FMRP loss affects abundance of key cellular communication genes that potentially affect neuronal synapses and provide a resource for interrogating the biological basis of this disorder.
  • Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing

    Wang, I-Hao; Andrews, Gregory; Donnard, Elisa; Duran-Laforet, Violeta; Faust, Travis E; Garber, Manuel; Baer, Christina E; Schafer, Dorothy P; Weng, Zhiping; Greer, Paul L (2022-03-21)
    The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.
  • Simultaneous profiling of multiple chromatin proteins in the same cells

    Gopalan, Sneha; Wang, Yuqing; Harper, Nicholas W; Garber, Manuel; Fazzio, Thomas G (2021-11-18)
    Methods derived from CUTandRUN and CUTandTag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here, we describe multi-CUTandTag, an adaptation of CUTandTag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUTandTag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUTandTag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell-type-specific chromatin architecture. In sum, multi-CUTandTag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different chromatin proteins.
  • scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in Treg function

    Gellatly, Kyle; Strassner, James P.; Essien, Kingsley I.; Ahmed Refat, Maggi; Murphy, Rachel L.; Coffin-Schmitt, Anthony; Frisoli, Michael L.; Fan, Xueli; Kim, Evangeline E.; Abbas, Zainab; et al. (2021-09-08)
    Vitiligo is an autoimmune skin disease characterized by the targeted destruction of melanocytes by T cells. Cytokine signaling between keratinocytes and T cells results in CD8+ T cell infiltration of vitiligo lesions, but the full scope of signals required to coordinate autoimmune responses is not completely understood. We performed single-cell RNA sequencing on affected and unaffected skin from patients with vitiligo, as well as healthy controls, to define the role of each cell type in coordinating autoimmunity during disease progression. We confirmed that type 1 cytokine signaling occupied a central role in disease, but we also found that this pathway was used by regulatory T cells (Tregs) to restrain disease progression in nonlesional skin. We determined that CCL5-CCR5 signaling served as a chemokine circuit between effector CD8+ T cells and Tregs, and mechanistic studies in a mouse model of vitiligo revealed that CCR5 expression on Tregs was required to suppress disease in vivo but not in vitro. CCR5 was not required for Treg recruitment to skin but appeared to facilitate Treg function by properly positioning these cells within the skin. Our data provide critical insights into the pathogenesis of vitiligo and uncover potential opportunities for therapeutic interventions.
  • Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK

    Gallagher, Michael P.; Conley, James M.; Vangala, Pranitha; Garber, Manuel; Reboldi, Andrea; Berg, Leslie J. (2021-08-31)
    The strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal interleukin-2-inducible T cell kinase (ITK) simultaneously trigger many biochemically separate signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions, ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through the unequal activation of distinct signaling pathways, we examined Erk1/2 phosphorylation or nuclear factor of activated T cells (NFAT) and nuclear factor (NF)-kappaB translocation in naive OT-I CD8(+) cell nuclei. We observed the consistent digital activation of NFAT1 and Erk1/2, but NF-kappaB displayed dynamic, graded activation in response to variation in TCR signal strength, tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed the dampened induction of AP-1 factors Fos and Fosb, NF-kappaB response gene transcripts, and survival factor Il2 transcripts. ATAC sequencing analysis also revealed that genomic regions most sensitive to ITK inhibition were enriched for NF-kappaB and AP-1 motifs. Specific inhibition of NF-kappaB during peptide stimulation tuned the expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating the optimal activation of separate TCR downstream pathways, specifically aiding NF-kappaB activation. More broadly, we revealed a mechanism by which variations in TCR signal strength can produce patterns of graded gene expression in activated T cells.
  • Simultaneous profiling of multiple chromatin proteins in the same cells [preprint]

    Gopalan, Sneha; Wang, Yuqing; Harper, Nicholas W; Garber, Manuel; Fazzio, Thomas G (2021-04-28)
    Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of colocalization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell type-specific chromatin architecture. In sum, multi-CUT&Tag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different proteins on chromatin.
  • Gaining Insight into Vitiligo Genetics through the Lens of a Large Epidemiologic Study

    Okamura, Ken; Garber, Manuel; Harris, John E. (2021-04-01)
    Several epidemiologic studies and GWASs have implicated genetic factors in the pathogenesis of vitiligo. The report by Kim et al. (2020) describes a prospective cohort study from Korea that has the greatest statistical power to date in addressing the epidemiology of vitiligo inheritance. The authors reported the incidence risk ratios in individuals whose first-degree relatives or spouses are affected, providing clear evidence that both genetic and nongenetic factors influence the pathogenesis of vitiligo.
  • The Tec kinase ITK differentially optimizes NFAT, NF-κB, and MAPK signaling during early T cell activation to regulate graded gene induction [preprint]

    Gallagher, Michael P.; Conley, James M.; Vangala, Pranitha; Reboldi, Andrea; Garber, Manuel; Berg, Leslie J. (2020-11-14)
    The strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal kinase ITK simultaneously trigger many biochemically separate TCR signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through unequal activation of disparate signaling pathways, we examined Erk1/2 activation and NFAT, NF-κB translocation in naive OT-I CD8+ cell nuclei. We observed consistent digital activation of NFAT1 and Erk-MAPK, but NF-κB displayed dynamic, graded activation in response to variation in TCR signal strength and was tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed dampened induction of AP-1 factors Fos and Fosb, NF-κB response gene transcripts, and survival factor Il2 transcripts. ATAC-seq analysis also revealed genomic regions most sensitive to ITK inhibition were enriched for NF-κB and AP-1 motifs. Specific inhibition of NF-κB during peptide stimulation tuned expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating optimal activation of separate TCR downstream pathways, specifically aiding NF-κB activation. More broadly, we revealed a mechanism by which variation in TCR signal strength can produce patterns of graded gene expression in activated T cells.
  • A comparative genomics multitool for scientific discovery and conservation

    Zoonomia Consortium; Genereux, Diane P.; Garber, Manuel; Lindblad-Toh, Kerstin; Karlsson, Elinor K (2020-11-11)
    The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.
  • High-Resolution Mapping of Multiway Enhancer-Promoter Interactions Regulating Pathogen Detection

    Vangala, Pranitha; Murphy, Rachel; Quinodoz, Sofia A.; Gellatly, Kyle J.; McDonel, Patrick E.; Guttman, Mitchell; Garber, Manuel (2020-10-15)
    Eukaryotic gene expression regulation involves thousands of distal regulatory elements. Understanding the quantitative contribution of individual enhancers to gene expression is critical for assessing the role of disease-associated genetic risk variants. Yet, we lack the ability to accurately link genes with their distal regulatory elements. To address this, we used 3D enhancer-promoter (E-P) associations identified using split-pool recognition of interactions by tag extension (SPRITE) to build a predictive model of gene expression. Our model dramatically outperforms models using genomic proximity and can be used to determine the quantitative impact of enhancer loss on gene expression in different genetic backgrounds. We show that genes that form stable E-P hubs have less cell-to-cell variability in gene expression. Finally, we identified transcription factors that regulate stimulation-dependent E-P interactions. Together, our results provide a framework for understanding quantitative contributions of E-P interactions and associated genetic variants to gene expression.
  • An atlas of cell types in the mouse epididymis and vas deferens

    Rinaldi, Vera D.; Donnard, Elisa; Rasmussen, Morten; Kucukural, Alper; Yukselen, Onur; Garber, Manuel; Sharma, Upasna; Rando, Oliver J. (2020-07-30)
    Following testicular spermatogenesis, mammalian sperm continue to mature in a long epithelial tube known as the epididymis, which plays key roles in remodeling sperm protein, lipid, and RNA composition. To understand the roles for the epididymis in reproductive biology, we generated a single-cell atlas of the murine epididymis and vas deferens. We recovered key epithelial cell types including principal cells, clear cells, and basal cells, along with associated support cells that include fibroblasts, smooth muscle, macrophages and other immune cells. Moreover, our data illuminate extensive regional specialization of principal cell populations across the length of the epididymis. In addition to region-specific specialization of principal cells, we find evidence for functionally specialized subpopulations of stromal cells, and, most notably, two distinct populations of clear cells. Our dataset extends on existing knowledge of epididymal biology, and provides a wealth of information on potential regulatory and signaling factors that bear future investigation.
  • SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues

    Ziegler, Carly G. K.; Cao, Yuming; Guo, Zhiru; Wang, Jennifer P.; Finberg, Robert W.; Garber, Manuel; Shalek, Alex K.; Ordovas-Montanes, Jose; HCA Lung Biological Network (2020-04-27)
    There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.
  • DolphinNext: a distributed data processing platform for high throughput genomics

    Yukselen, Onur; Turkyilmaz, Osman; Ozturk, Ahmet R.; Garber, Manuel; Kucukural, Alper (2020-04-19)
    BACKGROUND: The emergence of high throughput technologies that produce vast amounts of genomic data, such as next-generation sequencing (NGS) is transforming biological research. The dramatic increase in the volume of data, the variety and continuous change of data processing tools, algorithms and databases make analysis the main bottleneck for scientific discovery. The processing of high throughput datasets typically involves many different computational programs, each of which performs a specific step in a pipeline. Given the wide range of applications and organizational infrastructures, there is a great need for highly parallel, flexible, portable, and reproducible data processing frameworks. Several platforms currently exist for the design and execution of complex pipelines. Unfortunately, current platforms lack the necessary combination of parallelism, portability, flexibility and/or reproducibility that are required by the current research environment. To address these shortcomings, workflow frameworks that provide a platform to develop and share portable pipelines have recently arisen. We complement these new platforms by providing a graphical user interface to create, maintain, and execute complex pipelines. Such a platform will simplify robust and reproducible workflow creation for non-technical users as well as provide a robust platform to maintain pipelines for large organizations. RESULTS: To simplify development, maintenance, and execution of complex pipelines we created DolphinNext. DolphinNext facilitates building and deployment of complex pipelines using a modular approach implemented in a graphical interface that relies on the powerful Nextflow workflow framework by providing 1. A drag and drop user interface that visualizes pipelines and allows users to create pipelines without familiarity in underlying programming languages. 2. Modules to execute and monitor pipelines in distributed computing environments such as high-performance clusters and/or cloud 3. Reproducible pipelines with version tracking and stand-alone versions that can be run independently. 4. Modular process design with process revisioning support to increase reusability and pipeline development efficiency. 5. Pipeline sharing with GitHub and automated testing 6. Extensive reports with R-markdown and shiny support for interactive data visualization and analysis. CONCLUSION: DolphinNext is a flexible, intuitive, web-based data processing and analysis platform that enables creating, deploying, sharing, and executing complex Nextflow pipelines with extensive revisioning and interactive reporting to enhance reproducible results.
  • Single-cell analysis of upper airway cells reveals host-viral dynamics in influenza infected adults [preprint]

    Cao, Yuming; Guo, Zhiru; Vangala, Pranitha; Donnard, Elisa; Liu, Ping; McDonel, Patrick; Ordovas Montanes, Jose; Shalek, Alex K.; Finberg, Robert W.; Wang, Jennifer P.; et al. (2020-04-17)
    Influenza virus infections are major causes of morbidity and mortality. Research using cultured cells, bulk tissue, and animal models cannot fully capture human disease dynamics. Many aspects of virus-host interactions in a natural setting remain unclear, including the specific cell types that are infected and how they and neighboring bystander cells contribute to the overall antiviral response. To address these questions, we performed single-cell RNA sequencing (scRNA-Seq) on cells from freshly collected nasal washes from healthy human donors and donors diagnosed with acute influenza during the 2017-18 season. We describe a previously uncharacterized goblet cell population, specific to infected individuals, with high expression of MHC class II genes. Furthermore, leveraging scRNA-Seq reads, we obtained deep viral genome coverage and developed a model to rigorously identify infected cells that detected influenza infection in all epithelial cell types and even some immune cells. Our data revealed that each donor was infected by a unique influenza variant and that each variant was separated by at least one unique non-synonymous difference. Our results demonstrate the power of massively-parallel scRNA-Seq to study viral variation, as well as host and viral transcriptional activity during human infection.
  • HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells

    Wang, Yetao; Lifshitz, Lawrence M.; McCauley, Sean M.; Vangala, Pranitha; Kim, Kyusik; Derr, Alan G.; Jaiswal, Smita; Kucukural, Alper; McDonel, Patrick; Greenough, Thomas C.; et al. (2020-03-01)
    Human immunodeficiency virus 1 (HIV-1) infection is associated with heightened inflammation and excess risk of cardiovascular disease, cancer and other complications. These pathologies persist despite antiretroviral therapy. In two independent cohorts, we found that innate lymphoid cells (ILCs) were depleted in the blood and gut of people with HIV-1, even with effective antiretroviral therapy. ILC depletion was associated with neutrophil infiltration of the gut lamina propria, type 1 interferon activation, increased microbial translocation and natural killer (NK) cell skewing towards an inflammatory state, with chromatin structure and phenotype typical of WNT transcription factor TCF7-dependent memory T cells. Cytokines that are elevated during acute HIV-1 infection reproduced the ILC and NK cell abnormalities ex vivo. These results show that inflammatory cytokines associated with HIV-1 infection irreversibly disrupt ILCs. This results in loss of gut epithelial integrity, microbial translocation and memory NK cells with heightened inflammatory potential, and explains the chronic inflammation in people with HIV-1.
  • Single Cell Transcriptomics Reveals Dysregulated Cellular and Molecular Networks in a Fragile X Syndrome model [preprint]

    Donnard, Elisa; Shu, Huan; Garber, Manuel (2020-02-13)
    Despite advances in understanding the pathophysiology of Fragile X syndrome (FXS), its molecular bases are still poorly understood. Whole brain tissue expression profiles have proved surprisingly uninformative. We applied single cell RNA sequencing to profile a FXS mouse model. We found that FXS results in a highly cell type specific effect and it is strongest among different neuronal types. We detected a downregulation of mRNAs bound by FMRP and this effect is prominent in neurons. Metabolic pathways including translation are significantly upregulated across all cell types with the notable exception of excitatory neurons. These effects point to a potential difference in the activity of mTOR pathways, and together with other dysregulated pathways suggest an excitatory-inhibitory imbalance in the FXS cortex which is exacerbated by astrocytes. Our data demonstrate the cell-type specific complexity of FXS and provide a resource for interrogating the biological basis of this disorder.

View more