• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Identification, expression analysis, genomic organization and cellular location of a novel protein with a RhoGEF domain

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Authors
    Tse, Sze-Wah
    Broderick, Jennifer A.
    Wei, Mei-Ling
    Luo, Min-hua
    Smith, Deborah
    McCaffery, Peter J.
    Stamm, Stefan
    Andreadis, Athena
    UMass Chan Affiliations
    Shriver Center
    Department of Cell Biology
    Document Type
    Journal Article
    Publication Date
    2005-09-07
    Keywords
    Amino Acid Sequence
    Animals
    Blood Proteins
    Blotting, Northern
    Blotting, Western
    Brain
    Carrier Proteins
    Cell Line
    Cell Line, Tumor
    Cloning, Molecular
    Cytoplasm
    DNA, Complementary
    Exons
    *Gene Expression Profiling
    Guanine Nucleotide Exchange Factors
    Humans
    Immunohistochemistry
    Immunoprecipitation
    Introns
    Male
    Mice
    Molecular Sequence Data
    Phosphoproteins
    Protein Binding
    RNA, Messenger
    Rats
    Reverse Transcriptase Polymerase Chain Reaction
    Saccharomyces cerevisiae
    Sequence Alignment
    Sequence Analysis, DNA
    Sequence Homology, Amino Acid
    Two-Hybrid System Techniques
    tau Proteins
    Cell Biology
    Show allShow less
    
    Metadata
    Show full item record
    Link to Full Text
    http://dx.doi.org/10.1016/j.gene.2005.06.025
    Abstract
    In this study we describe the identification and characterization of a novel cytosolic protein of the guanine exchange factor (GEF) family. The human cDNA corresponds to predicted human protein FLJ00128/FLJ10357 located on chromosome 14q11.2. The deduced protein sequence contains in its C-terminus a RhoGEF domain followed by a pleckstrin domain. Its N-terminus, central region and RhoGEF/pleckstrin domain are homologous to the recently identified zebrafish Quattro protein, which is involved in morphogenetic movements mediated by the actin cytoskeleton. Based on the homology of our protein's RhoGEF domain to the RhoGEF domains of Trio, Duo and Duet and its homology with Quattro, we named it Solo. The Solo mRNA is ubiquitously expressed but enriched in brain, its expression peaks perinatally and it undergoes extensive alternative splicing. In both myoblasts and neuroblastoma cells, the Solo protein is concentrated around the nucleus.
    Source
    Gene. 2005 Oct 10;359:63-72. Link to article on publisher's site
    DOI
    10.1016/j.gene.2005.06.025
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/25677
    PubMed ID
    16143467
    Related Resources
    Link to Article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.gene.2005.06.025
    Scopus Count
    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Selective interaction of JNK protein kinase isoforms with transcription factors

      Gupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)
      The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
    • Thumbnail

      Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases

      Cantor, Sharon B.; Urano, Takeshi; Feig, Larry A. (1995-08-01)
      Ral proteins constitute a distinct family of Ras-related GTPases. Although similar to Ras in amino acid sequence, Ral proteins are activated by a unique nucleotide exchange factor and inactivated by a distinct GTPase-activating protein. Unlike Ras, they fail to promote transformed foci when activated versions are expressed in cells. To identify downstream targets that might mediate a Ral-specific function, we used a Saccharomyces cerevisiae-based interaction assay to clone a novel cDNA that encodes a Ral-binding protein (RalBP1). RalBP1 binds specifically to the active GTP-bound form of RalA and not to a mutant Ral with a point mutation in its putative effector domain. In addition to a Ral-binding domain, RalBP1 also contains a Rho-GTPase-activating protein domain that interacts preferentially with Rho family member CDC42. Since CDC42 has been implicated in bud site selection in S. cerevisiae and filopodium formation in mammalian cells, Ral may function to modulate the actin cytoskeleton through its interactions with RalBP1.
    • Thumbnail

      Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella

      Pazour, Gregory J.; Dickert, Bethany L.; Vucica, Yvonne; Seeley, E. Scott; Rosenbaum, Joel L.; Witman, George B.; Cole, Douglas G. (2000-11-04)
      Intraflagellar transport (IFT) is a rapid movement of multi-subunit protein particles along flagellar microtubules and is required for assembly and maintenance of eukaryotic flagella. We cloned and sequenced a Chlamydomonas cDNA encoding the IFT88 subunit of the IFT particle and identified a Chlamydomonas insertional mutant that is missing this gene. The phenotype of this mutant is normal except for the complete absence of flagella. IFT88 is homologous to mouse and human genes called Tg737. Mice with defects in Tg737 die shortly after birth from polycystic kidney disease. We show that the primary cilia in the kidney of Tg737 mutant mice are shorter than normal. This indicates that IFT is important for primary cilia assembly in mammals. It is likely that primary cilia have an important function in the kidney and that defects in their assembly can lead to polycystic kidney disease.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.