The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases
Authors
Samuelson, JohnBanerjee, Sulagna
Magnelli, Paula
Cui, Jike
Kelleher, Daniel J.
Gilmore, Reid
Robbins, Phillips W.
Document Type
Journal ArticlePublication Date
2005-02-01Keywords
Animals*Asparagine
Bacteria
Computational Biology
Dolichol
Evolution, Molecular
*Genetic Variation
Glycopeptides
Glycosyltransferases
Humans
Polysaccharides
Species Specificity
Biochemistry
Biochemistry, Biophysics, and Structural Biology
Bioinformatics
Molecular Biology
Metadata
Show full item recordAbstract
The vast majority of eukaryotes (fungi, plants, animals, slime mold, and euglena) synthesize Asn-linked glycans (Alg) by means of a lipid-linked precursor dolichol-PP-GlcNAc2Man9Glc3. Knowledge of this pathway is important because defects in the glycosyltransferases (Alg1-Alg12 and others not yet identified), which make dolichol-PP-glycans, lead to numerous congenital disorders of glycosylation. Here we used bioinformatic and experimental methods to characterize Alg glycosyltransferases and dolichol-PP-glycans of diverse protists, including many human pathogens, with the following major conclusions. First, it is demonstrated that common ancestry is a useful method of predicting the Alg glycosyltransferase inventory of each eukaryote. Second, in the vast majority of cases, this inventory accurately predicts the dolichol-PP-glycans observed. Third, Alg glycosyltransferases are missing in sets from each organism (e.g., all of the glycosyltransferases that add glucose and mannose are absent from Giardia and Plasmodium). Fourth, dolichol-PP-GlcNAc2Man5 (present in Entamoeba and Trichomonas) and dolichol-PP- and N-linked GlcNAc2 (present in Giardia) have not been identified previously in wild-type organisms. Finally, the present diversity of protist and fungal dolichol-PP-linked glycans appears to result from secondary loss of glycosyltransferases from a common ancestor that contained the complete set of Alg glycosyltransferases.Source
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1548-53. Epub 2005 Jan 21. Link to article on publisher's siteDOI
10.1073/pnas.0409460102Permanent Link to this Item
http://hdl.handle.net/20.500.14038/26045PubMed ID
15665075Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1073/pnas.0409460102