Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations
dc.contributor.author | Kurt, Nese | |
dc.contributor.author | Scott, Walter Robert Peter | |
dc.contributor.author | Schiffer, Celia A. | |
dc.contributor.author | Haliloglu, Turkan | |
dc.date | 2022-08-11T08:08:01.000 | |
dc.date.accessioned | 2022-08-23T15:39:22Z | |
dc.date.available | 2022-08-23T15:39:22Z | |
dc.date.issued | 2003-04-16 | |
dc.date.submitted | 2010-02-05 | |
dc.identifier.citation | Proteins. 2003 May 15;51(3):409-22. <a href="http://dx.doi.org/10.1002/prot.10350">Link to article on publisher's site</a> | |
dc.identifier.issn | 1097-0134 (Electronic) | |
dc.identifier.doi | 10.1002/prot.10350 | |
dc.identifier.pmid | 12696052 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14038/26149 | |
dc.description.abstract | The dynamics of HIV-1 protease, both in unliganded and substrate-bound forms have been analyzed by using an analytical method, Gaussian network model (GNM). The method is applied to different conformations accessible to the protein backbone in the native state, observed in crystal structures and snapshots from fully atomistic molecular dynamics (MD) simulation trajectories. The modes of motion obtained from GNM on different conformations of HIV-1 protease are conserved throughout the MD simulations. The flaps and 40's loop of the unliganded HIV-1 protease structure are identified as the most mobile regions. However, in the liganded structure these flaps lose mobility, and terminal regions of the monomers become more flexible. Analysis of the fast modes shows that residues important for stability are in the same regions of all the structures examined. Among these, Gly86 appears to be a key residue for stability. The contribution of residues in the active site region and flaps to the stability is more pronounced in the substrate-bound form than in the unliganded form. The convergence of modes in GNM to similar regions of HIV-1 protease, regardless of the conformation of the protein, supports the robustness of GNM as a potentially useful and predictive tool. | |
dc.language.iso | en_US | |
dc.relation | <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=12696052&dopt=Abstract">Link to Article in PubMed</a> | |
dc.relation.url | http://dx.doi.org/10.1002/prot.10350 | |
dc.subject | Binding Sites | |
dc.subject | Computer Simulation | |
dc.subject | Crystallography, X-Ray | |
dc.subject | HIV Protease | |
dc.subject | Ligands | |
dc.subject | *Models, Molecular | |
dc.subject | Protein Binding | |
dc.subject | Protein Conformation | |
dc.subject | Protein Structure, Tertiary | |
dc.subject | Substrate Specificity | |
dc.subject | Biochemistry, Biophysics, and Structural Biology | |
dc.subject | Pharmacology, Toxicology and Environmental Health | |
dc.title | Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations | |
dc.type | Journal Article | |
dc.source.journaltitle | Proteins | |
dc.source.volume | 51 | |
dc.source.issue | 3 | |
dc.identifier.legacycoverpage | https://escholarship.umassmed.edu/bmp_pp/86 | |
dc.identifier.contextkey | 1134059 | |
html.description.abstract | <p>The dynamics of HIV-1 protease, both in unliganded and substrate-bound forms have been analyzed by using an analytical method, Gaussian network model (GNM). The method is applied to different conformations accessible to the protein backbone in the native state, observed in crystal structures and snapshots from fully atomistic molecular dynamics (MD) simulation trajectories. The modes of motion obtained from GNM on different conformations of HIV-1 protease are conserved throughout the MD simulations. The flaps and 40's loop of the unliganded HIV-1 protease structure are identified as the most mobile regions. However, in the liganded structure these flaps lose mobility, and terminal regions of the monomers become more flexible. Analysis of the fast modes shows that residues important for stability are in the same regions of all the structures examined. Among these, Gly86 appears to be a key residue for stability. The contribution of residues in the active site region and flaps to the stability is more pronounced in the substrate-bound form than in the unliganded form. The convergence of modes in GNM to similar regions of HIV-1 protease, regardless of the conformation of the protein, supports the robustness of GNM as a potentially useful and predictive tool.</p> | |
dc.identifier.submissionpath | bmp_pp/86 | |
dc.contributor.department | Department of Biochemistry and Molecular Pharmacology | |
dc.source.pages | 409-22 |