Reduced tubulin polyglutamylation suppresses flagellar shortness in Chlamydomonas
UMass Chan Affiliations
Department of Cell and Developmental BiologyDocument Type
Journal ArticlePublication Date
2015-08-01
Metadata
Show full item recordAbstract
Ciliary length control is an incompletely understood process essential for normal ciliary function. The flagella of Chlamydomonas mutants lacking multiple axonemal dyneins are shorter than normal; previously it was shown that this shortness can be suppressed by the mutation suppressor of shortness 1 (ssh1) via an unknown mechanism. To elucidate this mechanism, we carried out genetic analysis of ssh1 and found that it is a new allele of TPG2 (hereafter tpg2-3), which encodes FAP234 functioning in tubulin polyglutamylation in the axoneme. Similar to the polyglutamylation-deficient mutants tpg1 and tpg2-1, tpg2-3 axonemal tubulin has a greatly reduced level of long polyglutamate side chains. We found that tpg1 and tpg2-1 mutations also promote flagellar elongation in short-flagella mutants, consistent with a polyglutamylation-dependent mechanism of suppression. Double mutants of tpg1 or tpg2-1 and fla10-1, a temperature-sensitive mutant of intraflagellar transport, underwent slower flagellar shortening than fla10-1 at restrictive temperatures, indicating that the rate of tubulin disassembly is decreased in the polyglutamylation-deficient flagella. Moreover, alpha-tubulin incorporation into the flagellar tips in temporary dikaryons was retarded in polyglutamylation-deficient flagella. These results show that polyglutamylation deficiency stabilizes axonemal microtubules, decelerating axonemal disassembly at the flagellar tip and shifting the axonemal assembly/disassembly balance toward assembly.Source
Mol Biol Cell. 2015 Aug 1;26(15):2810-22. doi: 10.1091/mbc.E15-03-0182. Link to article on publisher's site.DOI
10.1091/mbc.E15-03-0182Permanent Link to this Item
http://hdl.handle.net/20.500.14038/26476PubMed ID
26085508Related Resources
Link to Article in PubMedRights
© 2015 Kubo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Distribution License
http://creativecommons.org/licenses/by-nc-sa/3.0/ae974a485f413a2113503eed53cd6c53
10.1091/mbc.E15-03-0182
Scopus Count
Except where otherwise noted, this item's license is described as <p>© 2015 Kubo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</p>