We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
Department of Cell and Developmental BiologyDocument Type
Journal ArticlePublication Date
2016-02-01Keywords
Cardiac muscleElectron microscopy
Hypertrophic cardiomyopathy
Myosin binding protein C
Thin filament
cMyBP-C
Biophysics
Cell Biology
Metadata
Show full item recordAbstract
Mutations in cardiac myosin binding protein C (cMyBP-C), a thick filament protein that modulates contraction of the heart, are a leading cause of hypertrophic cardiomyopathy (HCM). Electron microscopy and 3D reconstruction of thin filaments decorated with cMyBP-C N-terminal fragments suggest that one mechanism of this modulation involves the interaction of cMyBP-C's N-terminal domains with thin filaments to enhance their Ca(2+)-sensitivity by displacement of tropomyosin from its blocked (low Ca(2+)) to its closed (high Ca(2+)) position. The extent of this tropomyosin shift is reduced when cMyBP-C N-terminal domains are phosphorylated. In the current study, we have examined L348P, a sequence variant of cMyBP-C first identified in a screen of patients with HCM. In L348P, leucine 348 is replaced by proline in cMyBP-C's regulatory M-domain, resulting in an increase in cMyBP-C's ability to enhance thin filament Ca(2+)-sensitization. Our goal here was to determine the structural basis for this enhancement by carrying out 3D reconstruction of thin filaments decorated with L348P-mutant cMyBP-C. When thin filaments were decorated with wild type N-terminal domains at low Ca(2+), tropomyosin moved from the blocked to the closed position, as found previously. In contrast, the L348P mutant caused a significantly larger tropomyosin shift, to approximately the open position, consistent with its enhancement of Ca(2+)-sensitization. Phosphorylated wild type fragments showed a smaller shift than unphosphorylated fragments, whereas the shift induced by the L348P mutant was not affected by phosphorylation. We conclude that the L348P mutation causes a gain of function by enhancing tropomyosin displacement on the thin filament in a phosphorylation-independent way.Source
J Mol Cell Cardiol. 2016 Feb;91:141-7. doi: 10.1016/j.yjmcc.2015.12.014. Epub 2015 Dec 21. Link to article on publisher's siteDOI
10.1016/j.yjmcc.2015.12.014Permanent Link to this Item
http://hdl.handle.net/20.500.14038/26500PubMed ID
26718724Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1016/j.yjmcc.2015.12.014