SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells
Authors
Barutcu, A. RasimLajoie, Bryan R.
Fritz, Andrew J.
McCord, Rachel P.
Nickerson, Jeffrey A.
van Wijnen, Andre J.
Lian, Jane B.
Stein, Janet L.
Dekker, Job
Stein, Gary S.
Imbalzano, Anthony N.
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyProgram in Systems Biology
Department of Cell and Developmental Biology
Document Type
Journal ArticlePublication Date
2016-09-01Keywords
BiochemistryCell Biology
Computational Biology
Developmental Biology
Genomics
Structural Biology
Systems Biology
Metadata
Show full item recordAbstract
The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization.Source
Genome Res. 2016 Sep;26(9):1188-201. doi: 10.1101/gr.201624.115. Epub 2016 Jul 19. Link to article on publisher's site
DOI
10.1101/gr.201624.115Permanent Link to this Item
http://hdl.handle.net/20.500.14038/26511PubMed ID
27435934Related Resources
Link to Article in PubMedRights
© 2016 Barutcu et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
Distribution License
http://creativecommons.org/licenses/by-nc/4.0/ae974a485f413a2113503eed53cd6c53
10.1101/gr.201624.115
Scopus Count
Collections
Except where otherwise noted, this item's license is described as <p>© 2016 Barutcu et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.</p>
Related items
Showing items related by title, author, creator and subject.
-
Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stressTentner, Andrea R.; Lee, Michael J; Ostheimer, Gerry J.; Samson, Leona D.; Lauffenburger, Douglas A.; Yaffe, Michael B. (2012-01-31)Following DNA damage, cells display complex multi-pathway signaling dynamics that connect cell-cycle arrest and DNA repair in G1, S, or G2/M phase with phenotypic fate decisions made between survival, cell-cycle re-entry and proliferation, permanent cell-cycle arrest, or cell death. How these phenotypic fate decisions are determined remains poorly understood, but must derive from integrating genotoxic stress signals together with inputs from the local microenvironment. To investigate this in a systematic manner, we undertook a quantitative time-resolved cell signaling and phenotypic response study in U2OS cells receiving doxorubicin-induced DNA damage in the presence or absence of TNFalpha co-treatment; we measured key nodes in a broad set of DNA damage signal transduction pathways along with apoptotic death and cell-cycle regulatory responses. Two relational modeling approaches were then used to identify network-level relationships between signals and cell phenotypic events: a partial least squares regression approach and a complementary new technique which we term 'time-interval stepwise regression.' Taken together, the results from these analysis methods revealed complex, cytokine-modulated inter-relationships among multiple signaling pathways following DNA damage, and identified an unexpected context-dependent role for Erk in both G1/S arrest and apoptotic cell death following treatment with this commonly used clinical chemotherapeutic drug.
-
The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryosErceg, Jelena; AlHaj Abed, Jumana; Goloborodko, Anton; Lajoie, Bryan R.; Fudenberg, Geoffrey; Abdennur, Nezar; Imakaev, Maxim; McCole, Ruth B.; Nguyen, Son C.; Saylor, Wren; et al. (2019-10-03)Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos.
-
Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom settingMavor, David; Roscoe, Benjamin P.; Bolon, Daniel N A; Fraser, James S. (2016-04-25)Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.