Show simple item record

dc.contributor.authorHoops, Harold J.
dc.contributor.authorWitman, George B.
dc.date2022-08-11T08:08:04.000
dc.date.accessioned2022-08-23T15:41:06Z
dc.date.available2022-08-23T15:41:06Z
dc.date.issued1985-01-01
dc.date.submitted2008-12-15
dc.identifier.citation<p>J Cell Biol. 1985 Jan;100(1):297-309.</p>
dc.identifier.issn0021-9525 (Print)
dc.identifier.doi10.1083/jcb.100.1.297
dc.identifier.pmid3965476
dc.identifier.urihttp://hdl.handle.net/20.500.14038/26552
dc.description.abstractThe interphase flagellar apparatus of the green alga Chlorogonium elongatum resembles that of Chlamydomonas reinhardtii in the possession of microtubular rootlets and striated fibers. However, Chlorogonium, unlike Chlamydomonas, retains functional flagella during cell division. In dividing cells, the basal bodies and associated structures are no longer present at the flagellar bases, but have apparently detached and migrated towards the cell equator before the first mitosis. The transition regions remain with the flagella, which are now attached to a large apical mitochondrion by cross-striated filamentous components. Both dividing and nondividing cells of Chlorogonium propagate asymmetrical ciliary-type waveforms during forward swimming and symmetrical flagellar-type waveforms during reverse swimming. High-speed cinephotomicrographic analysis indicates that waveforms, beat frequency, and flagellar coordination are similar in both cell types. This indicates that basal bodies, striated fibers, and microtubular rootlets are not required for the initiation of flagellar beat, coordination of the two flagella, or determination of flagellar waveform. Dividing cells display a strong net negative phototaxis comparable to that of nondividing cells; hence, none of these structures are required for the transmission or processing of the signals involved in phototaxis, or for the changes in flagellar beat that lead to phototactic turning. Therefore, all of the machinery directly involved in the control of flagellar motion is contained within the axoneme and/or transition region. The timing of formation and the positioning of the newly formed basal structures in each of the daughter cells suggests that they play a significant role in cellular morphogenesis.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=3965476&dopt=Abstract">Link to Article in PubMed</a></p>
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113479
dc.subjectAlgae, Green
dc.subjectChlamydomonas
dc.subjectFlagella
dc.subjectInterphase
dc.subjectMicroscopy, Electron
dc.subjectSpecies Specificity
dc.subjectAlgae
dc.subjectCell Biology
dc.subjectCells
dc.titleBasal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum
dc.typeJournal Article
dc.source.journaltitleThe Journal of cell biology
dc.source.volume100
dc.source.issue1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/cellbiology_pp/59
dc.identifier.contextkey682212
html.description.abstract<p>The interphase flagellar apparatus of the green alga Chlorogonium elongatum resembles that of Chlamydomonas reinhardtii in the possession of microtubular rootlets and striated fibers. However, Chlorogonium, unlike Chlamydomonas, retains functional flagella during cell division. In dividing cells, the basal bodies and associated structures are no longer present at the flagellar bases, but have apparently detached and migrated towards the cell equator before the first mitosis. The transition regions remain with the flagella, which are now attached to a large apical mitochondrion by cross-striated filamentous components. Both dividing and nondividing cells of Chlorogonium propagate asymmetrical ciliary-type waveforms during forward swimming and symmetrical flagellar-type waveforms during reverse swimming. High-speed cinephotomicrographic analysis indicates that waveforms, beat frequency, and flagellar coordination are similar in both cell types. This indicates that basal bodies, striated fibers, and microtubular rootlets are not required for the initiation of flagellar beat, coordination of the two flagella, or determination of flagellar waveform. Dividing cells display a strong net negative phototaxis comparable to that of nondividing cells; hence, none of these structures are required for the transmission or processing of the signals involved in phototaxis, or for the changes in flagellar beat that lead to phototactic turning. Therefore, all of the machinery directly involved in the control of flagellar motion is contained within the axoneme and/or transition region. The timing of formation and the positioning of the newly formed basal structures in each of the daughter cells suggests that they play a significant role in cellular morphogenesis.</p>
dc.identifier.submissionpathcellbiology_pp/59
dc.contributor.departmentDepartment of Cell Biology
dc.source.pages297-309


This item appears in the following Collection(s)

Show simple item record