We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney
UMass Chan Affiliations
Program in Molecular MedicineDocument Type
Journal ArticlePublication Date
2007-11-01
Metadata
Show full item recordAbstract
Activation of the p38 mitogen-activated protein kinase (MAPK) pathway induces inflammation, apoptosis, and fibrosis. However, little is known of the contribution of the upstream kinases, MMK3 and MKK6, to activation of the p38 kinase in the kidney and consequent renal injury. This study investigated the contribution of MKK3 to p38 MAPK activation and renal injury in the obstructed kidney. Groups of eight wild-type (WT) or Mkk3-/- mice underwent unilateral ureteric obstruction (UUO) and were killed 3 or 7 days later. Western blotting showed a marked increase in phospho-p38 (p-p38) MAPK in UUO WT kidney. The same trend of increased p-p38 MAPK was seen in the UUO Mkk3-/- kidney, although the actual level of p-p38 MAPK was significantly reduced compared with WT, and this could not be entirely compensated for by the increase in MKK6 expression in the Mkk3-/- kidney. Apoptosis of tubular and interstitial cells in WT UUO mice was reduced by 50% in Mkk3-/- UUO mice. Furthermore, cultured Mkk3-/- tubular epithelial cells showed resistance to H(2)O(2)-induced apoptosis, suggesting a direct role for MKK3-p38 signaling in tubular apoptosis. Upregulation of MCP-1 mRNA levels and macrophage infiltration seen on day 3 in WT UUO mice was significantly reduced in Mkk3-/- mice, but this difference was not evident by day 7. The development of renal fibrosis in Mkk3-/- UUO mice was not different from that seen in WT UUO mice. In conclusion, these studies identify discrete roles for MKK3-p38 signaling in renal cell apoptosis and the early inflammatory response in the obstructed kidney.Source
Am J Physiol Renal Physiol. 2007 Nov;293(5):F1556-63. Epub 2007 Aug 8. Link to article on publisher's siteDOI
10.1152/ajprenal.00010.2007Permanent Link to this Item
http://hdl.handle.net/20.500.14038/28332PubMed ID
17686961Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1152/ajprenal.00010.2007