A Queue-Based Monte Carlo Analysis to Support Decision Making for Implementation of an Emergency Department Fast Track
dc.contributor.author | Fitzgerald, Kristin | |
dc.contributor.author | Pelletier, Lori R. | |
dc.contributor.author | Reznek, Martin A | |
dc.date | 2022-08-11T08:08:17.000 | |
dc.date.accessioned | 2022-08-23T15:49:28Z | |
dc.date.available | 2022-08-23T15:49:28Z | |
dc.date.issued | 2017-03-28 | |
dc.date.submitted | 2018-01-08 | |
dc.identifier.citation | J Healthc Eng. 2017;2017:6536523. doi: 10.1155/2017/6536523. Epub 2017 Mar 28. <a href="https://doi.org/10.1155/2017/6536523">Link to article on publisher's site</a> | |
dc.identifier.issn | 2040-2295 (Linking) | |
dc.identifier.doi | 10.1155/2017/6536523 | |
dc.identifier.pmid | 29065634 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14038/28442 | |
dc.description.abstract | Emergency departments (EDs) are seeking ways to utilize existing resources more efficiently as they face rising numbers of patient visits. This study explored the impact on patient wait times and nursing resource demand from the addition of a fast track, or separate unit for low-acuity patients, in the ED using a queue-based Monte Carlo simulation in MATLAB. The model integrated principles of queueing theory and expanded the discrete event simulation to account for time-based arrival rates. Additionally, the ED occupancy and nursing resource demand were modeled and analyzed using the Emergency Severity Index (ESI) levels of patients, rather than the number of beds in the department. Simulation results indicated that the addition of a separate fast track with an additional nurse reduced overall median wait times by 35.8 +/- 2.2 percent and reduced average nursing resource demand in the main ED during hours of operation. This novel modeling approach may be easily disseminated and informs hospital decision-makers of the impact of implementing a fast track or similar system on both patient wait times and acuity-based nursing resource demand. | |
dc.language.iso | en_US | |
dc.relation | <p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=29065634&dopt=Abstract">Link to Article in PubMed</a></p> | |
dc.rights | Copyright © 2017 Kristin Fitzgerald et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | emergency departments | |
dc.subject | patient wait times | |
dc.subject | nursing resource demand | |
dc.subject | fast track | |
dc.subject | low-acuity patients | |
dc.subject | queues | |
dc.subject | Monte Carlo simulation | |
dc.subject | MATLAB | |
dc.subject | Biomedical Engineering and Bioengineering | |
dc.subject | Computer Sciences | |
dc.subject | Emergency Medicine | |
dc.subject | Health Information Technology | |
dc.subject | Mathematics | |
dc.subject | Statistics and Probability | |
dc.title | A Queue-Based Monte Carlo Analysis to Support Decision Making for Implementation of an Emergency Department Fast Track | |
dc.type | Journal Article | |
dc.source.journaltitle | Journal of healthcare engineering | |
dc.source.volume | 2017 | |
dc.identifier.legacyfulltext | https://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=1128&context=emed_pp&unstamped=1 | |
dc.identifier.legacycoverpage | https://escholarship.umassmed.edu/emed_pp/124 | |
dc.identifier.contextkey | 11337326 | |
refterms.dateFOA | 2022-08-23T15:49:28Z | |
html.description.abstract | <p>Emergency departments (EDs) are seeking ways to utilize existing resources more efficiently as they face rising numbers of patient visits. This study explored the impact on patient wait times and nursing resource demand from the addition of a fast track, or separate unit for low-acuity patients, in the ED using a queue-based Monte Carlo simulation in MATLAB. The model integrated principles of queueing theory and expanded the discrete event simulation to account for time-based arrival rates. Additionally, the ED occupancy and nursing resource demand were modeled and analyzed using the Emergency Severity Index (ESI) levels of patients, rather than the number of beds in the department. Simulation results indicated that the addition of a separate fast track with an additional nurse reduced overall median wait times by 35.8 +/- 2.2 percent and reduced average nursing resource demand in the main ED during hours of operation. This novel modeling approach may be easily disseminated and informs hospital decision-makers of the impact of implementing a fast track or similar system on both patient wait times and acuity-based nursing resource demand.</p> | |
dc.identifier.submissionpath | emed_pp/124 | |
dc.contributor.department | Operational Excellence, UMass Memorial Health Care | |
dc.contributor.department | Center for Innovation and Transformational Change, UMass Memorial Health Care | |
dc.contributor.department | Department of Quantitative Health Sciences | |
dc.contributor.department | Department of Emergency Medicine | |
dc.source.pages | 6536523 |