Use of Facial Recognition Software to Identify Disaster Victims With Facial Injuries
dc.contributor.author | Broach, John | |
dc.contributor.author | Yong, Rothsovann | |
dc.contributor.author | Manuell, Mary-Elise | |
dc.contributor.author | Nichols, Constance | |
dc.date | 2022-08-11T08:08:18.000 | |
dc.date.accessioned | 2022-08-23T15:49:53Z | |
dc.date.available | 2022-08-23T15:49:53Z | |
dc.date.issued | 2017-04-10 | |
dc.date.submitted | 2017-10-24 | |
dc.identifier.citation | Disaster Med Public Health Prep. 2017 Apr 10:1-5. doi: 10.1017/dmp.2016.207. <a href="https://doi.org/10.1017/dmp.2016.207">Link to article on publisher's site</a> | |
dc.identifier.issn | 1935-7893 (Linking) | |
dc.identifier.doi | 10.1017/dmp.2016.207 | |
dc.identifier.pmid | 28393744 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14038/28542 | |
dc.description.abstract | OBJECTIVE: After large-scale disasters, victim identification frequently presents a challenge and a priority for responders attempting to reunite families and ensure proper identification of deceased persons. The purpose of this investigation was to determine whether currently commercially available facial recognition software can successfully identify disaster victims with facial injuries. METHODS: Photos of 106 people were taken before and after application of moulage designed to simulate traumatic facial injuries. These photos as well as photos from volunteers' personal photo collections were analyzed by using facial recognition software to determine whether this technology could accurately identify a person with facial injuries. RESULTS: The study results suggest that a responder could expect to get a correct match between submitted photos and photos of injured patients between 39% and 45% of the time and a much higher percentage of correct returns if submitted photos were of optimal quality with percentages correct exceeding 90% in most situations. CONCLUSIONS: The present results suggest that the use of this software would provide significant benefit to responders. Although a correct result was returned only 40% of the time, this would still likely represent a benefit for a responder trying to identify hundreds or thousands of victims. | |
dc.language.iso | en_US | |
dc.relation | <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=28393744&dopt=Abstract">Link to Article in PubMed</a> | |
dc.relation.url | https://doi.org/10.1017/dmp.2016.207 | |
dc.subject | disaster medicine | |
dc.subject | disaster victim identification | |
dc.subject | facial recognition | |
dc.subject | mass casualty incidents | |
dc.subject | Emergency Medicine | |
dc.subject | Environmental Public Health | |
dc.subject | Trauma | |
dc.title | Use of Facial Recognition Software to Identify Disaster Victims With Facial Injuries | |
dc.type | Journal Article | |
dc.source.journaltitle | Disaster medicine and public health preparedness | |
dc.identifier.legacycoverpage | https://escholarship.umassmed.edu/emed_pp/85 | |
dc.identifier.contextkey | 10942882 | |
html.description.abstract | <p>OBJECTIVE: After large-scale disasters, victim identification frequently presents a challenge and a priority for responders attempting to reunite families and ensure proper identification of deceased persons. The purpose of this investigation was to determine whether currently commercially available facial recognition software can successfully identify disaster victims with facial injuries.</p> <p>METHODS: Photos of 106 people were taken before and after application of moulage designed to simulate traumatic facial injuries. These photos as well as photos from volunteers' personal photo collections were analyzed by using facial recognition software to determine whether this technology could accurately identify a person with facial injuries.</p> <p>RESULTS: The study results suggest that a responder could expect to get a correct match between submitted photos and photos of injured patients between 39% and 45% of the time and a much higher percentage of correct returns if submitted photos were of optimal quality with percentages correct exceeding 90% in most situations.</p> <p>CONCLUSIONS: The present results suggest that the use of this software would provide significant benefit to responders. Although a correct result was returned only 40% of the time, this would still likely represent a benefit for a responder trying to identify hundreds or thousands of victims.</p> | |
dc.identifier.submissionpath | emed_pp/85 | |
dc.contributor.department | Department of Emergency Medicine | |
dc.source.pages | 1-5 |