Monoaminergic orchestration of motor programs in a complex C. elegans behavior
Authors
Donnelly, Jamie L.Clark, Christopher M.
Leifer, Andrew M.
Pirri, Jennifer K.
Haburcak, Marian
Francis, Michael M.
Samuel, Aravinthan D. T.
Alkema, Mark J
Student Authors
Jamie L. DonnellyJennifer K. (Pirri) Ingemi
Christopher M. Clark
Academic Program
NeuroscienceUMass Chan Affiliations
Morningside Graduate School of Biomedical SciencesFrancis Lab
Alkema Lab
Neurobiology
Document Type
Journal ArticlePublication Date
2013-04-02
Metadata
Show full item recordAbstract
Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Galphao pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.Source
PLoS Biol. 2013;11(4):e1001529. doi: 10.1371/journal.pbio.1001529. Link to article on publisher's siteDOI
10.1371/journal.pbio.1001529Permanent Link to this Item
http://hdl.handle.net/20.500.14038/29019PubMed ID
23565061Notes
Co-authors Donnelly, Clark, and Pirri are doctoral students in the Neuroscience Program in the Morningside Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.
Related Resources
Link to Article in PubMedRights
Copyright: 2013 Donnelly et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.ae974a485f413a2113503eed53cd6c53
10.1371/journal.pbio.1001529