We are upgrading the repository! A content freeze is in effect until December 11, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Do Skeletal Dynamics Mediate Sugar Uptake and Transport in Human Erythrocytes
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyDocument Type
Journal ArticlePublication Date
2018-03-27Keywords
Biophysics
Metadata
Show full item recordAbstract
We explore, herein, the hypothesis that transport of molecules or ions into erythrocytes may be affected and directly stimulated by the dynamics of the spectrin/actin skeleton. Skeleton/actin motions are driven by thermal fluctuations that may be influenced by ATP hydrolysis as well as by structural alterations of the junctional complexes that connect the skeleton to the cell's lipid membrane. Specifically, we focus on the uptake of glucose into erythrocytes via glucose transporter 1 and on the kinetics of glucose disassociation at the endofacial side of glucose transporter 1. We argue that glucose disassociation is affected by both hydrodynamic forces induced by the actin/spectrin skeleton and by probable contact of the swinging 37-nm-long F-actin protofilament with glucose, an effect we dub the "stickball effect." Our hypothesis and results are interpreted within the framework of the kinetic measurements and compartmental kinetic models of Carruthers and co-workers; these experimental results and models describe glucose disassociation as the "slow step" (i.e., rate-limiting step) in the uptake process. Our hypothesis is further supported by direct simulations of skeleton-enhanced transport using our molecular-based models for the actin/spectrin skeleton as well as by experimental measurements of glucose uptake into cells subject to shear deformations, which demonstrate the hydrodynamic effects of advection. Our simulations have, in fact, previously demonstrated enhanced skeletal dynamics in cells in shear deformations, as they occur naturally within the skeleton, which is an effect also supported by experimental observations.Source
Biophys J. 2018 Mar 27;114(6):1440-1454. doi: 10.1016/j.bpj.2018.01.041. Link to article on publisher's site
DOI
10.1016/j.bpj.2018.01.041Permanent Link to this Item
http://hdl.handle.net/20.500.14038/29257PubMed ID
29590601Related Resources
ae974a485f413a2113503eed53cd6c53
10.1016/j.bpj.2018.01.041