The chromatin-binding domain of Ki-67 together with p53 protects human chromosomes from mitotic damage [preprint]
UMass Chan Affiliations
Department of Molecular, Cell and Cancer BiologyDocument Type
PreprintPublication Date
2020-10-16
Metadata
Show full item recordAbstract
Vertebrate mammals express a protein called Ki-67 which is most widely known as a clinically useful marker of highly proliferative cells. Previous studies of human cells indicated that acute depletion of Ki-67 can elicit a delay at the G1/S boundary of the cell cycle, dependent on induction of the checkpoint protein p21. Consistent with those observations, we show here that acute Ki-67 depletion causes hallmarks of DNA damage, and the damage occurs even in the absence of checkpoint signaling. This damage is not observed in cells traversing S phase but is instead robustly detected in mitotic cells. The C-terminal chromatin binding domain of Ki-67 is necessary and sufficient to protect cells from this damage. We also observe synergistic effects when Ki-67 and p53 are simultaneously depleted, resulting in increased levels of chromosome bridges at anaphase, followed by the appearance of micronuclei. Therefore, these studies identify the C-terminus of Ki-67 as an important module for genome stability.Source
bioRxiv 2020.10.16.342352; doi: https://doi.org/10.1101/2020.10.16.342352. Link to preprint on bioRxiv.
DOI
10.1101/2020.10.16.342352Permanent Link to this Item
http://hdl.handle.net/20.500.14038/29635Notes
This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.
Rights
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.Distribution License
http://creativecommons.org/licenses/by-nc-nd/4.0/ae974a485f413a2113503eed53cd6c53
10.1101/2020.10.16.342352
Scopus Count
Collections
Except where otherwise noted, this item's license is described as The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.